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We use density-functional theory to study the structure of two-dimensional defects inside a circular nematic nanocavity.
The density, nematic order parameter and director fields, as well as the defect core energy and core radius, are obtained in
a thermodynamically consistent way for defects with topological charge k ¼ þ1 (with radial and tangential symmetries)
and k ¼ þ1=2. An independent calculation of the fluid elastic constants, within the same theory, allows us to connect
with the local free-energy density predicted by elastic theory, which in turn provides a criterion to define a defect core
boundary and a defect core free energy for the two types of defects. The radial and tangential defects turn out to have very
different properties, a feature that a previous Maier–Saupe theory could not account for due to the simplified nature of
the interactions, which caused all elastic constants to be equal. In the case with two k ¼ þ1=2 defects in the cavity, the
elastic regime cannot be reached due to the small radii of the cavities considered, but some trends can already be obtained.
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1. Introduction

The analysis of defects in liquid crystals is very important

from many points of view. In liquid-crystal applications,

defects play a crucial role in governing display-cell opera-

tion. Also, there are interesting theoretical issues in dif-

ferent areas of physics concerning defects [1], and the

stabilisation of defects has been observed and analysed

in computer simulations [2–5]. A defect is a singularity in
the director field of the liquid crystal [6, 7]. Local proper-

ties of the liquid crystal, e.g. the nematic order parameter,

asymptotically relax to values of the bulk material far

from the singularity but, in its immediate neighbourhood,

properties undergo abrupt (i.e. within molecular lengths)

changes; this region somehow defines microscopically a

boundary for the so-called defect core.

Beyond the defect core, variations are smooth, so
that the macroscopic elastic theory of Frank [8] can be

used, together with some assumptions about defect core

energies and radii. Very often core energies are simply

ignored. It would be desirable to have estimations of

these properties based on more microscopic

approaches. In this context, the Landau–de Gennes [9]

theory has been used extensively to predict the proper-

ties of defects, but this theory is still mesoscopic in
nature and makes no contact with particle interactions.

An alternative is to use computer simulations, but these

are generally time consuming for the study of defects.

Therefore, the formulation of theories based on mole-

cular approaches are needed. A microscopic theory, of

the Maier–Saupe type, has been advanced [10], but it

has some shortcomings; for example, it predicts all

elastic constants to be equal, which causes different

types of defects to have identical properties. This article

is devoted to exploring the consequences of another
such theory, namely a simple version of density-func-

tional theory (DFT) for hard anisotropic particles in

two dimensions, which should give more realistic values

for the size and energies of defect cores since the theory

predicts different values for the elastic constants.

DFT is ideally suited to the study liquid-crystal

defects, since it self-consistently gives the thermody-

namic and microscopic structural properties of the
inhomogeneous nematic fluid. One advantage of DFT

over traditional approaches is that elastic constants, in

particular the problematic surface elastic constants,

and other phenomenological parameters do not appear

explicitly in the theory, but only implicitly through

interactions and distribution functions in a free-energy

functional which is minimised (to all orders in the

director spatial derivatives). The defect core structure
appears naturally, and this is ideal since, in contrast to

the usual approximation within elastic theories of

ignoring the defect cores in larger-sized nematic dro-

plets, the contribution of defects cannot be ignored in

nanocavities. One question is why details of defects

should be important to understand large-scale config-

urations of the director field and defect motion. The

microscopic approach enjoys some advantages when-
ever the relationship between bulk properties (such as

elastic constants) and molecular structure and interac-

tion parameters is required. Knowledge of the detailed

structure of defects will not be crucial to understanding
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large-scale configurations and defect motion in stable

nematics subject to boundaries or in nematic matrices

where colloidal particles are embedded, but there are

circumstances where this may not be so. For example,

in the kinetics of defect formation, re-organisation and

annihilation, it may be important to know the core

structure at short length scales. The microscopic
approach can give useful estimates of free-energy

changes, which are necessary to study the coarsening

dynamics at a more microscopic level using, for exam-

ple, a relaxational dynamical equation. Also, the micro-

scopic approach is essential at temperatures close to the

clearing temperature, where defects act as nucleation

seeds for the isotropic phase, and the structure and

dynamics of the defects may be changing dramatically.
In DFT the structure of the fluid is summarised by

the local density and orientational distribution func-

tions, which in turn may be used to obtain the more

familiar nematic order parameter and local director

field; these two factors are the basic elements used to

describe nematic fluids containing defects in the direc-

tor field. The connection between the two descriptions

is done via the local one-particle distribution function,
rðr;fÞ, which gives the average number of particles at

some position r with some orientation f (on the two-

dimensional plane). This quantity is obtained directly

from DFT, and from this all interesting fields can be

extracted, for example, the microscopic director fieldbnðrÞ, which is obtained locally as the direction where

the orientational part of the one-particle distribution

function presents a maximum (the macroscopic
nematic director could be obtained by some coarse-

grained average of the latter over some appropriate

volume). Therefore, the defect core region, along with

the far neighbourhood of the singularity, can be ana-

lysed within a single framework based on particle

interactions. The computational demands of the

method are high, however, and in the present article

we restrict ourselves to the case of two-dimensional
cavities of small radii (in the nanometre scale).

A defect is a singularity of the nematic director field n,

characterised by a topological charge k, i.e. the number of

turns of the director when the singularity is completely

encircled [6]. Elastic theory assumes smooth spatial var-

iations of the director and therefore is not able to account

for the structure of the singularity. In two dimensions the

local elastic free-energy density can be written as

felðrÞ ¼
1

2
k1 � � bnð Þ2þ 1

2
k3 bn� �� bnð Þj j2; ð1Þ

where k1; k3 are elastic constants for splay and bend

deformations (twist deformations are not possible in

two dimensions). Let us consider the two defects with

topological charge k ¼ þ1 depicted in Figure 1, which

are called ‘radial’ (r) and ‘tangential’ (t). If f is the

polar angle of the position vector r, then the director

field for the r defect is bn ¼ ðcosf; sinfÞ, and

� � bn ¼ 1=r, �� bn ¼ 0, so that only splay deforma-
tions are involved. In the t defect we havebn ¼ ðsinf;� cosfÞ, � � bn ¼ 0, bn� �� bnð Þj j ¼ 1=r,

and the only deformations involved are of bend type.

A general deformation will involve both modes. Now,

due to the singularity at the origin (location of defect),

the elastic free energy within an arbitrary area contain-

ing the origin will diverge logarithmically: elastic the-

ory fails here, and it is necessary to subtract this region
by arbitrarily defining a core region, with free energy

Fn and radius rn. The free energy within a circle or

radius R will be

Fr ¼ pk1 log
R

r
ðrÞ
n

þ F ðrÞn ;

Ft ¼ pk3 log
R

r
ðtÞ
n

þ F ðtÞn :

ð2Þ

For R!1 these energies diverge logarithmically, a

situation that cannot arise in practice due to the pre-

sence of defects with opposite charge in the material.

Little is known about the structure and properties

of defect cores [7]. They are generally treated at a

qualitative level, estimating the radius and defect core

energy in an approximate way [7]. Sometimes it is

assumed that these energies are negligible compared
with the elastic energy, and therefore defect cores are

neglected altogether, a drastic simplification which can

be severe if the system size is small. One of the first

attempts to describe the defect core is due to Schopohl

and Sluckin [11], who analysed a 1=2-disclination using

Landau–de Gennes theory with the complete ordering

(a) (b)

radial tangential

Figure 1. Schematic of the two types of defects of
topological charge k ¼ þ1 studied in this article. (a) Radial
defect, with particles pointing on average along the radial
direction, which excites splay distortion mode. (b)
Tangential defect, with particles pointing on average along
the tangential direction, which excites the bend distortion
mode. Dark circular regions represent the defect cores. Lines
are tangent to the director field.
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tensor Q. This study demonstrated that the core of

these defects does not consist of a region of isotropic

material, but rather it is ordered along the disclination

line (a possibility that does not exist in two dimensions).
Later Monte Carlo simulations on a hard spherocylin-

der model by Hudson and Larson [12] corroborated

this prediction, and also found a new structure with a

stable triangular nucleus for very elongated molecules.

In the only truly microscopic theory presented so

far, Sigillo et al. [10] used an approach based on a

Maier–Saupe theory with an orientational distribu-

tion function, analysing disclination lines of charge
k ¼ þ1 within a cylinder. This is a three-dimensional

setup, while ours is a two-dimensional one. However,

if one forgets about escape configurations, the director

field should in this case exhibit the same kind of con-

figurations as in our problem. The authors observed

that the radius of the core decreases as the orienta-

tional order parameter increases. Also, they examined

radial and tangential defects and analysed their cores
and their energies, obtaining that the two have the

same size and energy. As the authors recognise, this

conclusion, which is certainly wrong, is due to the

simplified interaction potential used, inherent in the

Maier–Saupe theory, which predicts identical values

for all the fluid elastic constants.

Despite the reduced theoretical attention received,

defect cores may play a very important role in many
aspects of liquid-crystal science. Mottram et al.

[13, 14], studied disclination lines of charge k ¼ þ1

and k ¼ þ1=2 near the isotropic–nematic transition

in three dimensions, and explained the impossibility

of heating a nematic material above a critical tempera-

ture Tc > TIN (clearing point) which is below the limit

of metastability of the nematic phase, owing to the

growth of the isotropic core. Defect cores properties
may also be relevant in dynamical aspects such as

defect motion [12, 15].

In this paper we make a first attempt at calculating

the properties of a defect core using a microscopic
approach based on DFT, using hard-particle interac-
tions. One of our aims is to improve upon the results of

Sigillo et al. [10] by making more sensible predictions
about the properties of the two types of defect cores
investigated, namely with radial and tangential sym-

metries, in a circular cavity. In Section 2 we briefly
review the particle model and the DFT, together with
the numerical approach and the bulk behaviour.

Section 3 is devoted to the calculation of the elastic
constants of the model. In contrast with elastic or
Landau approaches, the DFT formalism does not

require the region that is the core and the region that
is not the core to be specified, so that some criterion,
similar to the Gibbs dividing surface in the statistical

mechanics of interfaces, is needed to define the core. In

order to analyse this problem it is necessary to com-
pare the results from DFT with elastic theory, and this

demands knowledge of the splay and bend elastic
constants k1 and k3. The values of these constants
can be obtained within the same DFT framework. In

Section 4 we present results for two types of point
defects of charge k ¼ þ1 inside a circular cavity, pla-
cing emphasis on the size and energy of the defect core.

Also, we discuss a configuration containing two
k ¼ þ1=2 defects, for which no definite conclusions
can be drawn (due to the cavities explored being too

small) but some trends can be obtained.

2. Theory

In a previous paper [16] we have presented results for

the structure, thermodynamics and structural

(Frederiks) transitions of nematics confined into

two-dimensional circular nanocavities using DFT.

Here we use the same version of the theory in the
same setup, but with an emphasis on defect core struc-

ture and energetics. Details of the theory were given in

[16]; here we give a summary of the main features.

The particle model used is the hard disco-rectangle

(HDR) (see Figure 2), which can be thought of as the

projection of a spherocylinder on a plane. A HDR

particle has a rectangular section, of length L and a

diameter D, and two semicircular caps at the two ends
of the rectangle, also of diameter D. These particles

interact via exclusion (i.e. configurations with over-

lapping particles are not allowed, but particles are not

interacting otherwise), and can form a two-dimen-

sional nematic at high volume fraction [17]. As inter-

actions are hard, the temperature dependence is

trivial, so the relevant intensive variable in the thermo-

dynamics of this fluid will be the chemical potential
(or, alternatively, the density).

In DFT one writes an approximate free-energy

functional F½r� in terms of the one-particle distribution

φ

r R

L

D

Figure 2. Schematic of a hard disco-rectangle of total
length Lþ D and width D (left), and cavity with a particle
inside (right), showing the definition of the radial distance r,
polar angle f and cavity radius R. The dashed particle has its
centre of mass right at the cavity wall and cannot move
further inside the wall (i.e. inside the cavity outer region).
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function rðr;fÞ, which can be split as rðr;fÞ ¼
rðrÞf ðr;fÞ, where f ðr;fÞ is the angular distribution

function, and rðrÞ ¼
R

dfrðr;fÞ is the average local

density. The free-energy functional is written as

F ½r� ¼ Fid½r� þ Fexc½r� þ Fext½r� ð3Þ

with Fid½r� the ideal contribution,

bFid½r� ¼
Z

A

drrðrÞ log rðrÞ�2 � 1
� �

� k�1SrotðrÞ
� �

;

ð4Þ

where A is the total area of the cavity, � the thermal

wavelength and SrotðrÞ the local rotational entropy
density:

SrotðrÞ ¼ �k

Z 2p

0

df f ðr;fÞ log 2pf ðr;fÞ½ �: ð5Þ

As usual, b ¼ 1=kT , k being Boltzmann’s constant. We

write the excess part, Fexc½r�, in terms of that of a
reference fluid of locally parallel hard ellipses, which

in turn is obtained exactly from that of a hard-disc

fluid. HDRs, ellipses and discs will be chosen to have

the same particle area v and, in the case of HDRs and

ellipses, the same aspect ratio. These conditions are

sufficient to fix sk and s?, the diameters of the ellipses

along the major and minor axes, respectively, and

from here se, the hard-disc diameter, with s2
e ¼ sks?.

In the following we will use w ; L=D ¼ 15 (which

gives L ¼ 3:346se and D ¼ 0:223se). The excess free-

energy per particle of the hard-disc fluid is obtained

from a theory due to Baus and Colot [18]:

bCexcð�Þ ¼ ðc2 þ 1Þ �

1� � þ ðc2 � 1Þ logð1� �Þ; ð6Þ

where c2 ’ 0:1280, � ¼ r0v is the packing (or volume)

fraction, and r0 the mean number density. The excess

free energy is then written as

Fexc½r� ¼
Z

A

dr

Z 2p

0

dfrðr;fÞjðr;fÞ; ð7Þ

where the local free-energy per particle is

jðr;fÞ ¼ Cexcð�ðrÞÞ
ps2

erðrÞ

Z
A

dr0
Z 2p

0

df0rðr0;f0Þ

� vexcðr� r0;f;f0Þ ð8Þ

Here vexc is the overlap function of two HDR particles

(equal to zero if particles overlap and unity otherwise).

This expression is a variation of the Parsons–Lee

[19, 20] theory for homogeneous fluids of hard rods,

or (from a different perspective) a variation of the

Somoza–Tarazona [21] theory for inhomogeneous

fluids of hard rods (both in three dimensions).

Finally, Fext½r� is the contribution from the external

potential (see Figure 2):

Fext½r� ¼
Z

A

dr

Z 2p

0

dfrðr;fÞvextðr;fÞ: ð9Þ

The external potential acting on the particles will be

chosen according to the type of favoured particle

orientation at the cavity surface. In the case of the
radial defect it is sufficient to use, as an external

potential, a hard wall acting on the particle centres of

mass:

vextðr;fÞ ¼
1; r > R;
0; r < R;

�
ð10Þ

where r is the radial distance measured from the centre

of the cavity, and R is the radius of the circular cavity.

This choice is known to favour homeotropic (i.e. per-

pendicular to the wall) orientation of the fluid director

next to the wall [16], thus inducing an r-type defect.
For the tangential defect a different choice is necessary

(see Section 4.2).

The angular distribution function f ðr;fÞ is para-

meterised according to

f ðr;fÞ ¼ eaðrÞ cos 2 f�cðrÞ½ �R 2p
0

dfeaðrÞ cos 2f
; ð11Þ

where the field cðrÞ is the local tilt angle of the nematic

director, measured with respect to the x-axis, and aðrÞ
is a variational function, related with the local nematic

order parameter qðrÞ by

qðrÞ ¼
Z 2p

0

df f ðr;fÞ cos 2 f� cðrÞ½ �f g: ð12Þ

These equations allow one to describe the configura-

tion of the fluid by means of the three local fields
frðrÞ; qðrÞ;cðrÞg; in the following we use the local

packing fraction, �ðrÞ ¼ ps2
erðrÞ=4, instead of the

local density, rðrÞ, as basic density variable. Finally,

for a cavity of fixed radius R, we impose on the system

a constant chemical potential m, and minimise the

cavity grand potential

b�½r� ¼ F ½r� � m
Z

A

dr

Z 2p

0

dfrðr;fÞ ð13Þ

48 D. de las Heras et al.
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with respect to variations of the variables defined

above. To obtain the minimum the two-dimensional

space xy is discretised into a square lattice with spacing

�x ¼ �y ¼ 0:089se, with mesh points ðxi; yjÞ, repre-

senting 40 points in a particle length Lþ D. The cir-

cular surface is approximated by a zigzag line. The

trapezoidal rule was used to calculate spatial integra-
tions, while angular integrals were approximated

using Gaussian quadrature with 30–40 roots. The

field variables f�ðrÞ; qðrÞ;CðrÞg were discretised as �ij,

qij and Cij, and the free-energy functional was minim-

ised using the conjugate-gradient method.

This model presents a bulk isotropic–nematic

phase transition for packing fraction �IN ¼ 0:257 and

reduced pressure pv0=kT ¼ 0:98 (estimates from simu-
lation [17] give �IN ¼ 0:363). The transition is of the

second order.

3. Elastic constants

In order to compare with elastic theory, we need some

criterion to define the boundary of the defect core. In

this respect it is useful to compare the free-energy

densities from DFT and elastic theory since, from

this comparison, we can locate the boundary separat-

ing defect core from the outside region (where elastic
theory should be valid) as the distance where both

densities coincide. We see that this definition is some-

what arbitrary, as it relies on our definition of how

close, numerically speaking, the two free-energy den-

sities should be. We come to this point later. For the

moment, we note that the elastic free-energy density

contains elastic constants that must be known in

advance. These constants have to be calculated within
the same DFT scheme: the DFT free-energy density

will smoothly tend to the value predicted by elastic

theory provided that we use the values for elastic con-

stants predicted by DFT. Then we calculate separately

the elastic constants k1 and k3 in the framework of

DFT. The expressions for the elastic constants are:

k1 ¼ �
Cexcð�0Þ

4�0

Z 2p

0

df
Z 2p

0

df0r0ðfÞr0ðf0ÞVyyðf;f0Þ;

k3 ¼ �
Cexcð�0Þ

4�0

Z 2p

0

df
Z 2p

0

df0r0ðfÞr0ðf0ÞVxxðf;f0Þ;

ð14Þ

where �0 ¼ r0v is the bulk packing fraction. These

constants are evaluated at the uniform nematic
(no spatial inhomogeneities or director distortions).

The one-particle distribution function is then

rðr;fÞ ; rðfÞ ¼ r0f ðfÞ. In the expressions above,

r0ðfÞ is the derivative of the one-particle distribution

function with respect to the tilt angle,

r0ðfÞ ¼ @r=@c ¼ r0@f=@f, and where we defined

Vijðf;f0Þ ;
Z

excluded area

drvexcðr;f;f0Þxixj : ð15Þ

The area integral over r is extended over the area of

exclusion of two particles. Details on how these expres-
sions are obtained can be found in Appendix A. An

alternative and equivalent way to obtain the elastic

constants is to use the same confinement setup (circular

cavity) defined above and impose a given director field

with pure splay or bend deformations (Figure 1), setting

the density and nematic order parameters to the corre-

sponding bulk values. Now if the free-energy density, as

given by evaluation of the functional, is represented
along any one of the cavity diameters (there is azi-

muthal symmetry), we can extract the elastic constants

by comparing with the radial dependence predicted by

elastic theory in the intermediate region (far from both

the cavity centre and the cavity surface). We have seen

already that the radial dependence is approximately

1=r2 in both cases. Since no minimisation is implicit in

this method, one can use very large cavities
(R,100ðLþ DÞ) so that the elastic constants can be

obtained with accuracy.

In Table 1 and Figure 3 we provide values for k1

and k3 (as expected, the two strategies to obtain the

elastic constants explained above give the same results,

except for some tiny differences that come from the

numerical accuracy of angular and spatial integrals).

The values of the elastic constants are zero at the bulk
transition. k3 is always larger than k1, and their differ-

ence increases with density: when �0 � 0:4 the differ-

ence is almost an order of magnitude, which means

that bend deformations are more costly energetically

than splay deformations. This is an important point,

Table 1. Bulk properties of nematic fluid of a HDR of
aspect ratio w ¼ 15, as obtained from DFT. Here �m=kT is
the excess chemical potential with respect to the isotropic–
nematic coexistence value, in units of thermal energy kT ; �0

and q are the packing fraction and nematic order parameter;
and k1=kT , k3=kT are values of elastic constants, also in units
of thermal energy.

�m=kT �0 q k1=kT k3=kT

0:15 0:270 0:27 0:08 0:11

0:75 0:303 0:63 0:47 1:13

1:75 0:360 0:83 0:93 4:05

2:75 0:410 0:90 1:27 8:72

4:25 0:470 0:94 1:70 17:8

5:25 0:503 0:96 2:01 25:2

6:25 0:533 0:97 2:38 33:8
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as most studies based on elastic theory assume the one-

constant approximation k1 ¼ k3. In our case (HDR

particles with aspect ratio w ¼ 15) this approximation

ceases to be valid even very close to the isotropic–
nematic transition (see Figure 3(d)). In confined

nematics under strong geometric restrictions such as

the one studied here, nematic order is very frustrated

and stable nematic configurations are only obtained

for conditions deep into the bulk nematic stability

region (i.e. and considerably far from the bulk transi-

tion); this means that the one-constant approximation

will be very inaccurate. For particles with lower aspect
ratios this problem will become less acute.

One consequence of this problem can be seen in the

paper by Bates [22], where the nematic ordering of

hard spherocylinders lying on the surface of a sphere

is examined via Monte Carlo simulation. Geometry

forces the creation of four defects of charge þ1=2.

However, analysis based on the one-constant approx-

imation predict that the defects are located at the
vertices of a tetrahedron, while the simulations show

that they are in fact distributed along a great circle: in

this way the director field arranges itself in a way such

that splay distortions are maximised, while bend dis-

tortions, much more costly energetically, are

minimised.

Another observation of our calculations concerns

the bulk isotropic–nematic transition. This transition

has been studied by Bates and Frenkel [17] using

Monte Carlo simulation. Assuming the transition to
be of the Kosterlitz–Thouless type [23], and also that

the two elastic constants are equal, the transition

should occur when the elastic constant reaches the

critical value kc ¼ 8kT=p. Using our values for the

elastic constants and taking the average
�k ¼ ðk1 þ k3Þ=2, we obtain �IN ¼ 0:36, in perfect

agreement with the simulations.

4. Results

In this section we analyse various types of defects. We

start with the radial configuration, r, where only splay-

type director distortions are present and there is a
central defect of topological charge k ¼ þ1. There

follows the case of charge k ¼ þ1 but with a tangen-

tial, t, director field. Finally, we consider point defects

with charge k ¼ þ1=2.

4.1. Radial defect with charge k ¼ þ1

In [16] we found that this defect can only be stabilised

at low chemical potential, close to the bulk isotropic–

nematic transition. As the chemical potential is
increased, the r configuration becomes metastable

and the central k ¼ þ1 defect splits into two

k ¼ þ1=2 defects. However, it is possible to impose

the r configuration by preparing the system so that the

director is forced to always point radially, keeping the

director field unchanged during the conjugate-gradi-

ent minimisation.

An example is given in Figure 4, where the pack-
ing-fraction profile along one diameter is displayed.

The different cases shown correspond to increasing

cavity radius, from R=ðLþ DÞ ¼ 1:98 to 7:98.

Calculations are presented for fixed relative chemical

potential �m=kT ¼ 2:75, where �m is referred to the

value of m at the bulk isotropic–nematic transition.

Three well-defined regions can be seen. In the central

region a marked depletion in number of particles is
observed, which corresponds to the defect core. In the

neighbourhood of this region the density is quite con-

stant, and as the inner surface of the cavity is

approached a local minimum appears, followed by a

sharp density increase due to surface adsorption. Since

we are mostly interested in the defect core, to minimise

the effects of the surface on the core properties we need

to consider as large a cavity as possible. Our present
computational capabilities limit the radius of the cav-

ity to R � 10ðLþ DÞ. However, a simple inspection of

the profiles seems to indicate that the surface effects

are relatively weak, even in small cavities. This figure
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Figure 3. Elastic constants of a nematic fluid of HDR
particles with aspect ratio w ¼ 15, as obtained from DFT.
(a) Splay elastic constant k1 in thermal energy units kT as a
function of packing fraction �. (b) Bend elastic constant k3 in
thermal energy units kT as a function of packing fraction. (c)
Splay (continuous line) and bend (dashed line) elastic
constants as a function of nematic order parameter q. (d)
Ratio of elastic constants as a function of packing fraction.
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clearly demonstrates that the size of the defect core is

well defined even for cavities of small radius (say

R)3:2ðLþ DÞ).
In the neighbourhood of the defect core there is a

region dominated by elastic effects. If the defect were

very far from any surface this region would extend up
to the surface, but the question is: is it possible to

obtain a truly elastic regime for small cavities such as

those investigated here? To answer this question, we

focus on the (grand-potential) free-energy density

inside the cavity, oðrÞ, defined by

b� ¼ Z
A

droðrÞ: ð16Þ

In Figure 5 the free-energy density is plotted as a func-

tion of radial distance from the centre of the cavity, for

a cavity radius R ¼ 7:98ðLþ DÞ. The elastic free-energy

density felðrÞ ¼ k1=2r2 is also included; to obtain this

energy, the value for the k1 elastic constant was taken

from the DFT calculations (Table 1). Of course both
free energies disagree in the central region of the cavity

(where the free-energy density from elastic theory

diverges at the singularity) and in the region close to

the surface. However, there is an intermediate region, in

the interval re< r < rs (with re ’ 2:0� 3:0ðLþ DÞ and

rs ’ 5:0� 5:5ðLþ DÞ), where the agreement is quite

good; this is a signature of the elastic region. The con-

clusion that an elastic regime can indeed be defined was
also reached by Sigillo et al. [10] in their Maier–Saupe

approach and indirectly in Landau–de Gennes

approaches [11]. The free-energy density may be used
to loosely define a defect core size in terms of the radial

distance at which the free-energy density begins to

behave as ,r�2 (of course this is an ambiguous defini-

tion that, in practical terms, does not affect the numer-

ical values of the defect core properties significantly).

In the case of Figure 5 we obtain a size

2re ’ 4� 5ðLþ DÞ; this should be a few times the cor-

relation length x, which is in agreement with calcula-
tions on three-dimensional defects by Landau–de

Gennes theory [11].

The properties of a cavity of radius

R ¼ 7:98ðLþ DÞ are summarised in Figure 6. The pro-

files of the nematic order parameter, Figures 6(a) and

(b), indicate that the core radius decreases as the che-

mical potential m increases. To quantify this effect more

precisely and analyse the depletion of the order para-
meter that occurs inside the central region, we have

defined two additional measures of the defect core

radius, r
ð1Þ
n and r

ð2Þ
n , as the inflection points in the

nematic order parameter and the density profiles,

respectively; these two quantities do not coincide with,

but should behave like, the energy-based measure re as

thermodynamic conditions are varied). In Figure 6(c)

we plot these quantities as symbols. Both have a similar
behaviour: they decrease quickly with m and saturate at

high chemical potential, with the inflection point of the

nematic order parameter saturating a bit earlier.

The fact that the core radius decreases with m does

not mean that its effects propagate to a smaller region;

in fact, the result is quite the opposite. The difference

between bulk and core densities increases with m, while

–6 –4 – 2 0 2 4 6
r / (L+D)

0.3

0.4

0.5

η

Figure 4. For a radial defect of charge k ¼ þ1, local
packing fraction � as a function of radial distance r from
the cavity centre (in units of particle length Lþ D), along an
arbitrary cavity diameter, at relative chemical potential
�m=kT ¼ 2:75. Lines correspond to different cavity radii:
R=ðLþ DÞ ¼ 1:98, 3.17, 3.98, 4.98, 5.98 and 7:98
(continuous and dashed lines alternate for a better
visualisation).
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Figure 5. Grand-potential density o, in units of se and kT ,
as a function of radial distance (in units of particle length
Lþ D), along an arbitrary diameter of a cavity with
R ¼ 7:98ðLþ DÞ (continuous line). The relative chemical
potential is �m=kT ¼ 2:75. The dashed line is the elastic
free-energy density according to elastic theory. Here re and
rs are approximate radial distances for the boundaries of the
elastic region. The inset is a zoom of the central region.
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the intermediate region extends to larger distances.

However, the effective core radius re (where the free-

energy density differs significantly from the elastic

one) is usually in the interval 2:5� 3ðLþ DÞ, largely

independent of m for large �m.

The successful identification of an asymptotic elas-

tic region and the ensuing possibility of defining a

defect core boundary allows us to associate a free
energy Fn with the defect core. We do this by integrat-

ing the excess of grand-potential density over a uni-

form fluid at the same chemical potential inside a circle

of radius re (where elastic behaviour sets in):

Fn ¼ 2p
Z re

0

drroðrÞ: ð17Þ

This energy is represented in Figure 6(d) as a function of

the elastic constant k1. The calculation has been per-
formed using r ¼ 2:75ðLþ DÞ as a cut-off distance, but

calculations were also performed using 2:5ðLþ DÞ and

3:0ðLþ DÞ to see the effect of changing the cut-off; error

bars in the data correspond to these two limits. As can be

seen in the figure, the differences are very small.

In phenomenological treatments it is usual to

assume that the free energy of a disclination core of

charge k is Fn ¼ k2p�k, where �k is an elastic constant [7]

in the one-constant approximation (�k ¼ k1 ¼ k3)
which, for the radial defect, is k1. Our DFT results

give support to the linear relation between F
ðrÞ
n and k1,

but the slope (obtained by a linear fit) is equal to 12.2,

which is four times larger than that predicted by the

phenomenological theory for a point defect of charge

k ¼ þ1. The dependence of F
ðrÞ
n on chemical potential

is also linear, with a slope of 4:09 (not shown).

4.2. Tangential defect with charge k ¼ þ1

In this case the director field only supports bend distor-

tions, as shown in Figure 1. To stabilise such a structure

we need a surface potential that favours planar anchor-

ing, i.e.particle orientations tangential to the surface.

We use the following model for external potential:

vextðr;fÞ ¼
1; r > R;
V0 cos 2ðf� cÞe�aðR�rÞ; r < R;

�
ð18Þ

where V0 is the surface strength. For large enough V0,
the surface favours tangential anchoring; we have

checked that this is the case, e.g. for V0 ¼ 0:7kT and

a ¼ 1:08ðLþ DÞ�1. These are the values we use in the

following to study a defect with tangential anchoring.

The inclusion of an external field with an exponen-

tial decay means that the surface interacts with the fluid

at longer distances than in the previous case. An addi-

tional feature is that, since the splay elastic constant is
smaller than the bend elastic constant, the size of the

defect core is larger. Both these effects play against the

possibility of reaching the elastic regime in the region

between the defect and the surface. Therefore, much

larger cavities are needed. Our computational limit is

R,15ðLþ DÞ, which is not large enough to obtain

reasonably accurate estimates of the core energy, for

example. The only safe conclusion is that this energy is
significantly larger than that of the radial defect.

Despite this problem, it is instructive to study the

structure of the defect core in a qualitative way. Figure 7

shows the order parameter profiles in the defect core

region for a cavity of radius R ¼ 7:98ðLþ DÞ (for larger

cavities the profiles will be slightly different). The

nematic order parameter behaves similarly as in the

previous case, save the different size. The density has a
pronounced maximum at the core centre. The size of the

central depleted region is larger than one particle length,

allowing for a higher particle concentration inside the

defect core.
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Figure 6. Some properties of a nanocavity of radius
R ¼ 7:98ðLþ DÞ. (a) Local packing fraction � as a function
of radial distance r from the cavity centre (in units of particle
length Lþ D) for various values of relative chemical
potential: �m=kT ¼ 0:75, 1.75, 2.75, 4.25, 5.25 and 6:25
(from bottom to top) and for a radial defect with k ¼ þ1.
(b) Nematic order parameter q as a function of radial
distance r from the cavity centre (in units of particle
length). Profiles as in panel (a). (c) Core radius rn in units
of particle length as a function of relative chemical potential.
Filled circles: rð1Þn . Open circles: rð2Þn . (d) Core energy FðrÞn as
function of splay elastic constant k1, both in thermal energy
units. Error bars were calculated with the two choices
re ¼ 2:5ðLþ DÞ and 3:0ðLþ DÞ for the upper limit in the
integral of Equation (17). The straight line is a linear fit.

52 D. de las Heras et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 B

ay
re

ut
h]

 a
t 0

0:
51

 1
1 

M
ar

ch
 2

01
4 



4.3. Defect with charge k ¼ þ1=2

The present geometry can also be used to explore a
more interesting case: a defect with charge k ¼ þ1=2.

The minimum-energy state contains two defects of

charge k ¼ þ1=2, separated by a distance d0, when

the cavity radius is sufficiently large, but the analysis

is more complicated here, as two additional minimisa-

tions are required: a partial one with respect to the

‘fast’ variables at fixed defect separation, and a mini-

misation with respect to the defect separation d0,
which is a slow variable. As a result, the computation

time increases by an order of magnitude. The practical

consequence is that the maximum radius of the cavity

that can be analysed is reduced, and the task of split-

ting contributions of defect cores from the rest

becomes harder.

In Figure 8 we have plotted the order parameters

for a configuration with two k ¼ þ1=2 defects, at two
different chemical potentials. The configurations were

obtained by minimising the functional in a cavity of

radius R ¼ 3:18ðLþ DÞ (only a region of size

30� 30D2 containing the two defect cores is shown).

In the left column local packing fraction � (top),

nematic order parameter (middle) and tilt angle (bot-

tom) are shown for the case �m ¼ 1:75kT . The right

column shows the same profiles when the chemical
potential is increased to �m ¼ 6:75kT . In the corners

of the density plots the structure has radial symmetry:

this is a surface effect. This is an indication that larger

cavities may be necessary for a more detailed study.

We can clearly see that the core size decreases consid-

erably as the chemical potential is increased (this effect

is more visible in the nematic order parameter).

Another remarkable effect is the loss of radial symme-

try of the defect as the chemical potential is increased.
The profiles in the left column (low chemical potential)

have an almost radial symmetry with respect to the

defect core (save the tilt angle, obviously). As m is

increased (right column), the core shrinks in all direc-

tions, especially along the direction joining the two

defects, where the director field is constant.

Unfortunately, we have not yet been able to study

cavities large enough for the core structure and the sur-
face structure to relax completely to the elastic limit, but

qualitative estimates can be obtained for the relevant

properties of the core. This can be seen in Figure 9. In

Figure 9(a) we plot the average radius of a defect core as

a function of the chemical potential. Similar to the radial

defect, the average radius rn has been defined as the

inflection point of the density profile, averaged over all

directions (since here there is no angular symmetry). We
can see that there is a rapid decay as m increases, and rn

levels off at a value approximately equal to half the value

for the radial defect (see Figure 6(c)). Therefore, the core

area, which is proportional to r2
n, is about four times less
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Figure 7. (a) Local packing fraction � as a function of radial
distance r from the cavity centre (in units of particle length
Lþ D) for various values of relative chemical potential:
�m=kT ¼ 0:75, 1.75, 2.75, 4.25, 5.25 and 6:25 (from bottom
to top) and for a tangential defect with k ¼ þ1. (b) Nematic
order parameter q as a function of radial distance r from the
cavity centre (in units of particle length). Profiles as in panel
(a). All data pertain to the case R ¼ 7:98ðLþ DÞ.

Figure 8. Contour plots with respect to xy coordinates for
local packing fraction � (upper row), nematic order parameter
q (middle) and director tilt angle C (lower) for two
configurations with relative chemical potentials
�m ¼ 1:75kT (left column) and �m=kT ¼ 6:75 (right
column) in a cavity of radius R ¼ 3:18ðLþ DÞ. Here xy
coordinates in units of D, and the tilt angle is given in degrees.
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in the case k ¼ þ1=2 than in the case k ¼ 1. In Figure

9(b) we plot the defect core energy as a function of the

elastic constant k1. The straight line is a linear regression

with slope m ¼ 5:04, approximately a factor 2:5 smaller
than in the k ¼ þ1 defect. We could expect a factor of 2

beforehand, since we know in advance that, even in very

small cavities, the structure with two k ¼ þ1=2 defects is

more stable than that with a single, radial defect. In this

case the largest contribution to the free energy comes

from the defect cores, and therefore the energy of both

cores plus their repulsive energy must be at most equal to

the energy of the radial defect. We mentioned before that
the defect energy is generally taken to be Fn ¼ k2p�k and

we would expect a factor 1=4 in the case k ¼ þ1=2 with

respect to the radial defect (the size is approximately four

times smaller). The behaviour of the director field in the

core region exhibits bend-like distortions (�� n � 0)

for k ¼ þ1=2, which do not appear in the radial defect

and can be the origin of such a difference.

5. Summary and conclusions

In summary, we have studied the core properties of a
defect in two dimensions, using a DFT (microscopic)

model, free from fitting parameters, that includes consis-

tently variations in density and nematic order parameter.

All cases studied predict the formation of an isotropic

region in the defect, something to be expected in two

dimensions. The core free energy is proportional to the

elastic constant, with a varying proportionality constant

that depends on the type of defect studied; this is due to
the different energetic cost associated with deformations

of splay and bend type. The size of the defect cores is of

the order of a few particle lengths, and decreases as the

nematic ordering of the surrounding fluid increases. The

core size saturates for strong nematic ordering.

The study of a two-dimensional defected nematic

fluid, used here mainly for computational reasons,

may be useful to understand three-dimensional phe-
nomena in the physics of defects. As mentioned in the

introduction, knowledge of the structure and ener-

getics of defects may be important in dynamical pro-

blems, such as defect formation or nucleation and

coursing of the nematic and isotropic phases. This

structure may be changing in time and a microscopic

approach may be helpful to follow the dynamics via

relaxation equations that involve the gradient of a free
energy. A natural extension of our work therefore

involves the study of three-dimensional nematic fluids

and their defects. Schemes where the microscopic and

mesoscopic approaches are combined would also be

useful in the above-mentioned problems, and work

along this avenue is underway in our group.
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Appendix A. Calculation of elastic constants

Expressions for the elastic constants of a three-dimen-

sional nematic liquid crystal were derived by
Poniewierski and Stecki [24] using a direct correlation

function route. From these expressions it is easy to

write the corresponding two-dimensional expressions.

Obtaining the direct correlation function of the theory

(which, in our Onsager-type theory, is basically the

Mayer function) one can obtain explicit expressions

in terms of integrals over the excluded area and the

orientational distribution functions. Here we present
an alternative derivation, valid only in two dimen-

sions, in terms of expansions in the local tilt angle

cðrÞ. We start from Equations (7) and (8) for the

excess free energy of a nematic with constant density,

expressed explicitly in terms of the tilt angle:

Fexc½r� ¼
Cexcð�0Þ

4�0

Z
dr

Z
dfr½f� cðrÞ�

�
Z Z

dr0 df0 vexcðr� r0;f;f0Þr½f0 � cðr0Þ�:

ðA1Þ
Now we expand the second local density rðf0 � cðr0ÞÞ
in cðr0Þ around r0 ¼ r. Letting �r ¼ r0 � r, we have

cðr0Þ ¼ cðrÞ þ�r � �rcþ
1

2
�r � �r½ �2cþ � � � : ðA2Þ

Then we expand the density:

r½f0 �cðr0Þ� ¼ r½f0 �cðrÞ� þ @r
@c

����
r

cðr0Þ �cðrÞ½ �

þ 1

2

@2r

@c2

����
r

cðr0Þ � cðrÞ½ �2þ � � � :
ðA3Þ

Substituting (A2) and keeping terms up to third order

in the gradient:

r½f0 � cðr0Þ� ¼rðf0 � cðrÞÞ þ @r
@c

����
r

� �r � �rcþ
1

2
�r � �rð Þ2cþO �rcð Þ3

� 	

þ 1

2

@2r

@c2

����
r

� �r � �rcþ
1

2
�r � �rð Þ2cþO �rcð Þ3

� 	2

þ � � �

¼ r½f0 � cðrÞ� þ r0c½f
0 � cðrÞ��r � �rc

þ 1

2
r0c½f

0 � cðrÞ� �r � �rð Þ2c

þ 1

2
r00c½f

0 � cðrÞ� �r � �rcð Þ2þ � � � :

ðA4Þ

The first term gives the free energy of the undistorted

nematic (since cðrÞ is supposed to be a slowly varying

field). The elastic free energy is then

Fel½r� ¼
Cexcð�0Þ

8�0

�
Z Z

drdfrðf� cðrÞÞ

�
Z Z

dr0 df0vexcðr0;f;f0Þ

� r0c½f0 � cðrÞ�r0 � �rcþ
1

2
r0c½f0 � cðrÞ� r0 � �r½ �2c

�

þ 1

2
r00cðf

0 � cðrÞÞ r0 � �rc½ �2
o
:

ðA5Þ

We can take cðrÞ ¼ 0 in the argument of the density
profiles and its derivatives; the elastic free-energy den-

sity is then

fdðrÞ ¼
Cexcð�0Þ

8�0

Z
dfrðfÞ

Z Z
dr0 df0 vexcðr0;f;f0Þ

� r0cðf
0Þ r0 � �rcð Þ þ 1

2
r0cðf

0Þ r0 � �rð Þ2c
�

þ 1

2
r00cðf

0Þ r0 � �rcð Þ2


:

ðA6Þ

Now we note that

Z
dr0 vexcðr0;f;f0Þr0 ¼ 0; ðA7Þ
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owing to the symmetry Vðr;f;f0Þ ¼ Vð�r;f;f0Þ, and

the term linear in the gradient of cðrÞ vanishes, as it

should be. Defining the dyadic

eVðf;f0Þ; Z drvexcðr;f;f0Þrr; ðA8Þ

we obtain

Fel½r� ¼
Cexcð�0Þ

8�0

�
X
b�

Z Z
dfdf0 Vb�ðf;f0Þ

Z
drrðf� cðrÞÞ

� r0c½f0 � cðrÞ�@b�cðrÞ
n
þ r00c½f

0 � cðrÞ�@bcðrÞ@�cðrÞ
o
: ðA9Þ

Now we integrate the term with the second derivatives
by parts:

Z
drr½f� cðrÞ�r0c½f

0 � cðrÞ�@b�cðrÞ

¼ r½f� cðrÞ�r0c½f0 � cðrÞ�@�cðrÞ
���
xb¼ constant

�
Z

dr r0c½f� cðrÞ�r0c½f
0 � cðrÞ�

n
þr½f� cðrÞ�r00c½f

0 � cðrÞ�
o
@bcðrÞ@�cðrÞ:

ðA10Þ

The rr00 terms in (A9) cancel out, and the surface term

is neglected. Then

felðrÞ ¼ �
Cexcð�0Þ

8�0

X
ab��

Z Z
dfdf0Vb�ðf;f0Þ

� r0cðf� cðrÞÞr0cðf0 � cðrÞÞ@bcðrÞ@�cðrÞ:
ðA11Þ

which is the searched-for expression. In terms of the

unit vector bo along the particle axis, we havebo � bn ¼ cosðf� cÞ, and

r0cðf� cÞ ¼ r0ðbo � bnÞ sinðf� cÞ;
r0cðf0 � cÞ ¼ r0ðbo0 � bnÞ sinðf0 � cÞ;
@b bo � bnð Þ ¼

X
a

oa@bna ¼ sinðf� cÞ@bc;

@� bo0 � bn� �
¼
X
�

o0�@�n� ¼ sinðf0 � cÞ@�c;

and, therefore,

r0cðf� cÞ@bc ¼ r0ðbo � bnÞ sinðf� cÞ@bc
¼ r0ðbo � bnÞX

a

oa@bna;

r0cðf0 � cÞ@�c ¼ r0ðbo0 � bnÞ sinðf0 � cÞ@�c
¼ r0ðbo0 � bnÞX

�

o0�@�n�;

ðA12Þ

so that in terms of the gradients of the nematic
director:

felðrÞ ¼ �
Cexcð�0Þ

8�0

X
ab��

Z Z
dfdf0 Vb�ðf;f0Þ

� r0ðbo � bnÞr0ðbo0 � bnÞoao0�@bna@�n�:

ðA13Þ

Since the direct correlation function of our model is

cðr; bo; bo0Þ ¼ �Cexcð�0Þ
2�0

vexcðr; bo; bo0Þ; ðA14Þ

our expressions for k1; k3 coincide with the general

expressions by Poniewierski and Stecki [24] using a

direct correlation function route.

Now in two dimensions the Frank elastic free

energy contains only splay and bend distortions:

felðrÞ ¼
1

2
k1 � � bnð Þ2þ 1

2
k3 �� bnj j2: ðA15Þ

Splay and bend are given, respectively, by the

deformations:

� � bnð Þ2¼ @nx

@x
þ @ny

@y


 �2

¼ @xnxð Þ2þ @yny

� �2þ2 @xnxð Þ @yny

� �
;

ðA16Þ

�� bnj j2¼ @ny

@x
� @nx

@y


 �2

¼ @xny

� �2þ @ynx

� �2�2 @xny

� �
@ynx

� �
;

and, therefore,

k1 ¼ �
Cexcð�0Þ

4�0

Z Z
dfdf0r0ðfÞVxxðf;f0Þr0ðf0Þ;

k3 ¼ �
Cexcð�0Þ

4�0

Z Z
dfdf0r0ðfÞVyyðf;f0Þr0ðf0Þ:

ðA17Þ

Here it is assumed that the director goes along the

x-axis.
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