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Topological defects in a two-dimensional liquid crystal confined in a circular nanocavity
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Using a microscopic theory based on excluded-volume interactions, we analyze the structure and thermo-
dynamic stability of configurations in a two-dimensional liquid crystal confined into a (small) circular nano-
cavity. Weak homeotropic anchoring conditions are considered, and topological defects of total charge k=+1
are discussed. It is found that, for small cavity radii, the cavity is free of defects at the expense of surface free
energy not being optimized. For larger cavities, a configuration with two repulsive k=+1/2-charge point

defects is always stable. The two configurations are equally stable thermodynamically (structural or Frederiks
transition) on a curve in the chemical potential-cavity radius plane. This curve ends for chemical potential and
cavity radius below some critical values. Elastic-theory arguments are used to explain the stability of the
defected structure compared with the one free of defects. Our results indicate that the two-defect structure is
always more stable than the one with a single point defect of charge k=+1 at the cavity center, which, in
agreement with computer simulation, is never found to be stable. Finally, the relation with the bulk behavior of

the fluid is discussed.

DOI: 10.1103/PhysRevE.79.061703

I. INTRODUCTION

Topological defects in liquid crystals continue to attract
interest from many perspectives. One of them is obviously
related to the important technological applications of liquid
crystals [1] and the role of defects in display-cell operation
and the design of new technologies [2]. More recent studies
have unveiled the implications of this topic in cosmology
[3]. In three-dimensional (3D) nematics, both line (disclina-
tion) and point (monopole) defects are possible, while only
the point defects can be obtained in two-dimensional (2D). A
defect is a singularity of the nematic director field [4] char-
acterized by a topological charge, i.e., the number of turns of
the director when the singularity is completely encircled. The
Frank-Oseen [5] elastic theory has been extensively used to
study defects in liquid crystals. It assumes smooth variations
in the director in space and therefore is not able to account
for the structure in the immediate neighborhood of the sin-
gularity. The description of strong variations in fluid proper-
ties near defects is usually made with phenomenological
theories of the Landau—de Gennes type, containing effective
phenomenological parameters, and based on a local ordering
tensor Q(r) [1]. Many applications of Landau-de Gennes
theories to line and point defects also exist in the literature.
However, phenomenological theories lack any connection
with particle shape and particle interactions. Simulations of
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lattice models [6], and more recently of continuous particle
models [7-10], have been done recently to fill this gap, but
there is a lack of theoretical models based on microscopic
particle interactions, which can consistently deal with the
thermodynamic and structural aspects of the problem in a
less computational demanding way.

In this paper we apply the density-functional theory to
study the thermodynamics and structural properties of point
defects in a 2D nematic liquid confined into a (small) circu-
lar nanocavity. The two-dimensional geometry is used be-
cause of computational limitations, but the two-dimensional
case is interesting by itself, and we are not meaning to ap-
proximate the most straightforward 3D (cylindrical) geom-
etry by the present 2D calculations. The method based on
density-functional theory could, in principle, be applied to
3D cavities and other topologies. The 2D cavity is an inter-
esting setup since there exists the possibility that defects, i.e.,
configurations with a net topological charge, may be stabi-
lized as a result of the frustrating boundary. Here the stability
of defects results from the competing effects of surface elas-
tic and defect core energies: for the fluid to optimize the
surface energy, one or more point defects must necessarily
appear in the cavity.

We restrict ourselves to studying relatively small nematic
cavities (nanocavities), of only a few particle lengths in di-
ameter, which is an interesting problem as the nanoconfine-
ment will, in general, induce severe structural constraints
that can lead to new phenomena. Homeotropic, i.e., perpen-
dicular to the surface, orientation of the nematic director is
assumed to be energetically favored at the surface, but this
condition is weak in the sense that other terms in the free
energy can overcome the favored surface configuration. The
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total topological charge in the cavity is k=+1. This can be
obtained from a single defect at the center or from two k=
+1/2 defects symmetrically situated with respect to the cen-
ter. Alternatively, when the surface energy is relatively un-
important compared to other energies, the fluid may get rid
of the defects in the cavity and adopt a more or less uniform
director configuration by not optimizing the surface energy.
We are interested in the relative stability of these structures,
the ones with a net topological charge and that with null
charge, and a phase diagram describing the stability of the
different structures is predicted. Note that our theoretical ap-
proach allows us to treat, in a consistent way, the effect of
thermodynamic variables, chemical potential (or tempera-
ture), and radius of the cavity on this stability. In particular,
we will discuss the relation between the defect structure in
the cavity and the bulk isotropic-nematic transition. Two-
dimensional defects have not received much theoretical at-
tention so far, most studies being devoted to the structure of
3D defects. With few exceptions (see, e.g., [11]), the effect of
thermodynamic conditions has been ignored. For example,
phase diagrams for 3D nematic droplets and cylindrical
pores were obtained by Kralj and Zumer [12] using a sim-
plified Landau—de Gennes theory. Conditions were intention-
ally chosen to be far from the bulk transition, and the nem-
atic order parameter was assumed to be uniform.
Consequently only the effect of surface and bulk fields on the
different director configurations was investigated.

By contrast, the theoretical point of view adopted here is
based on a microscopic theory, i.e., density-functional theory,
which explicitly incorporates particle interactions. This is a
step beyond classical treatments based on mesoscopic theo-
ries and provides a theoretical description intermediate be-
tween mesoscopic approaches and computer simulation stud-
ies. One of its advantages is that the elastic constants (in
particular, the problematic surface elastic constants) and
other phenomenological parameters do not appear explicitly
in the theory but only implicitly through the interactions and
distribution functions in a free-energy functional which is
minimized. The defect core appears naturally, and this is
ideal when studying nanocavities, as in this case the contri-
bution of defects cannot be ignored, as is usually the case in
larger-sized nematic droplets treated with elastic theories.

Even though our theory is mean field, we have access to
density and orientational order-parameter inhomogeneities,
all coupled consistently with the local director and the sur-
face contributions. As one of the outcomes of this investiga-
tion, we found a very weak structure of the fluid in the cav-
ity, as a result of the high degree of confinement and the
existence of frustration in the nematic field (i.e., defects have
a disordering effect [11]). We also show the structure of the
defect cores and study the energetics associated with the de-
fect position within the cavity. For instance, we conclude that
the radial nematic configuration, with a single point defect of
charge k=+1 at the center, is always unstable with respect to
a configuration with two k=+1/2-charge defects. This is in
agreement with simulation results [9,10]. In turn, for the type
of surface considered, we find competition between this
structure and the structure containing no defects.

After explaining the density-functional model in detail
and some technical issues concerning the numerical ap-
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FIG. 1. Schematic of the cavity. r is the position vector of a
particle, while ¢ is the angle of its long axis with respect to the x
axis. R is the radius of the cavity. Particle drawn with dashed line
has its center of mass right at the wall surface.

proach in Sec. II, we present the results in Sec. III. First we
review the bulk properties in Sec. III A and then the structure
and thermodynamics of the confined fluid in Sec. III B. A
short discussion on links with elastic theory is given in Sec.
IIT C, while Sec. III D provides some data which suggest the
existence of scaling properties in the configuration with two
k=+1/2 defects with respect to the cavity radius, and the
relation with the bulk isotropic-nematic transition is dis-
cussed in Sec. IV. Finally, Sec. V is devoted to providing
some conclusions of the work.

II. THEORY

The particle model used here is the two-dimensional ver-
sion of the popular spherocylinder model, i.e., a hard dis-
corectangle (HDR), Fig. 1. These particles consist of a rect-
angular part, length L and width D, and two semicircular
caps of diameter D at the two opposite ends of the rectangle.
The interactions between these hard particles will be exclu-
sively excluded-volume interactions since these interactions
are sufficient to generate nematic ordering. This means that
the relevant thermodynamic intensive variable will be the
chemical potential rather than the temperature. The HDR
particles will be placed inside a circular cavity of small ra-
dius R (Fig. 1).

A. Density-functional theory

The statistical mechanics of this system was treated using
density-functional theory, which is focused on the one-
particle distribution function p(r, ¢), where r is the location
of the particle center and ¢ the angle of the particle axis with
respect to the laboratory-frame x axis (Fig. 1). We write
p(r,d)=p(r)f(r,d), where f(r, ) is the angular distribution
function, and the average local density is p(r)=[ddp(r, d).
As usual, we split the free-energy functional into ideal excess
and external parts,

F[P] = Fid[P] + Fexc[p] + Fexl[p]v (1)

with

061703-2



TOPOLOGICAL DEFECTS IN A TWO-DIMENSIONAL...

A2
BFilp]= f drp(r){log[—p - ]—k-‘smxr)}, @)
A T

where A is the total area of the cavity, A is the thermal
wavelength, and S,(r) is the local rotational entropy density,

2w
Srr) ==k f def(r, p)log[27f(r, $)]. 3)

0

As usual, B=1/kT, k being Boltzmann’s constant. The fac-
tors 24r in the arguments of the logarithms in Eq. (2) and (3)
are introduced so as to make S,,,=0 when particles are ori-
entationally disordered, i.e., when f(r,¢)=1/21.

The excess part can be written in terms of that of a refer-
ence system. The reference system used will be a fluid of
locally parallel hard ellipses since this fluid can be exactly
mapped onto a fluid of hard disks and there are very accurate
theories for the thermodynamics of this system. The hard
ellipse chosen will have the same particle area v, and the
same aspect ratio as the HDR: if oy and o, are the diameters
of the ellipses along the major a minor diameters and o, is
the effective diameter of the reference hard disk, with of
=00, then we demand

L+D g
D (ot @)
D? T T 5
—+LD=—00,=—0,
4 4

In the following we will use y=L/D=15, which gives L
=3.3460, and D=0.2230,. The thermodynamics of the fluid
of parallel hard ellipses or of the fluid of hard disks can be
described from the equation of state p(7), where p is the
pressure and

ar, T,
n="Pr="Loq, (5)

is the packing fraction. For the equation of state of hard disks
we have used one of the approximations proposed by Baus
and Colot [13] (specifically their Z, expression), which gives
very good results in the fluid range. The explicit expression
for the excess free energy per particle of the uniform fluid is

Y
lgq’exc(ﬂ)=(cz+1)l_77"'(02—1)10:%(1—77), (6)
with
-
7 4N3
Cy= — — —2 = 0.1280. (7)
3 T

The excess free energy is then written as

21
Fodp]= j ar f dbpir. D) elr.B), )
A 0

where the local excess free energy per particle is
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where v, is the overlap function of two HDR particles
(equal to zero if particles overlap and unity otherwise). Note
that when p(r, ¢) is a constant, ¢=W,.. Finally, the contri-
bution from the external potential is

2
Feulpl= J dr f dop(r, P)vey(r. ¢). (10)
A 0

The external potential is simply taken to be a hard wall act-
ing over the particle centers of mass:

w, r>R

11
0, r<R. (1)

Bvext(r’ d)) = {
Here r is the radial distance measured from the center of the
cavity (Fig. 1).

It is convenient to define a connection between the distri-
bution function f(r, ¢) and the order tensor. This connection
will be established via a local nematic order parameter g and
a local director given by its polar angle W (in 2D the order
tensor only has one nontrivial eigenvalue, hence a single
order parameter; therefore there is no biaxiality in 2D, in
contrast with the 3D case). To simplify the calculations, we
consider a parametrization for the angular dependence of
f(r, ). The simplest choice that respects the basic symmetry
of the angular distribution [for our particles with head-tail
symmetry f(r,$)=f(r,p+m)] is

euz(r)cos 2[p—¥(r)]

flr,¢)= (12)

21 ’
J d¢6‘ a(r)cos 2[ - (r)]
0

where the field W(r) is the local tilt angle of the nematic
measured with respect to the x axis, and a(r) is a variational
function related with the local nematic order parameter ¢(r)
by

2
q(r) = f def(r, ¢)cos{2[¢ -V (r)]}. (13)
0

This equation establishes a one-to-one correspondence be-
tween a(r) and ¢(r). Now, within this approximate scheme,
the full description of the liquid crystal in terms of the den-
sity p(r, ¢) can be given, in a completely equivalent way, by
the set of functions {p(r),q(r), ¥(r)}. In the following we
will use the local packing fraction, 7(r), given by Eq. (5),
instead of the local density p(r), as a basic density variable.

Now our cavity of finite area A is coupled to a thermal
and particle reservoir at temperature 7" and chemical poten-
tial u, with which the cavity is assumed to interchange en-
ergy and particles (the exact particle interchange mechanism
need not concern us now; the cavity could be experimentally
realized, e.g., by filling a circular indentation on a surface,

061703-3



DE LAS HERAS, VELASCO, AND MEDEROS

thus producing a finite quasimonolayer, which could be in
contact with a semi-infinite fluid above). The equilibrium
configuration of the cavity at fixed (u,A,T) will be obtained
by minimization of the cavity grand potential functional

Alpl:
21
Q[p]=F[p]—/f«f drf dp(r,d) (14)
A 0

with respect to variations in the variables defined above. The

average number of particles N inside the cavity will be ob-
tained by integration of the equilibrium density distribution
p(r) over the area A. In the results to be presented below

N~ 10?10 so that the cavity is a small system, far from the
thermodynamic limit. Alternatively we can minimize the
Helmoltz free-energy functional F[p] at fixed number of par-
ticles N; the results would be equivalent, provided care is
taken to correctly identify the chemical potential [14]. In the
limit of large cavities we would recover bulk behavior.

B. Numerical details

To obtain the functional minimum of the free energy, we
first discretized the two-dimensional space xy into a square
lattice with spacing Ax=Ay=0.0890,, with mesh points
(x;,y;). This represents 40 points in a particle length L+D.
Obviously the circular surface was approximated by a zigzag
line. However, the mesh spacing is fine enough for the ap-
proximation to be accurate, as will be demonstrated by the
density and order-parameter profiles to be presented below.
The spatial integrations were calculated using the trapezoidal
rule, while the angular integrals were approximated using
Gaussian quadrature with 30—40 roots. The density distribu-
tion, expressed in terms of the set {7(r), ¢(r) and WV (r)}, was
discretized as 7;;, g;;, and W;, and the free-energy functional
was minimized using the conjugate-gradient method.

The structure of the liquid crystal inside the circular cav-
ity has a high degree of symmetry. This symmetry has been
used to simplify the calculations which, taking into account
all the possible structures within the cavity (see Sec. III B),
can be reduced to just one quadrant of the circle. In particu-
lar, the gradients of the discretized functional were calculated
in this quadrant only.

III. RESULTS
A. Bulk behavior

First we present the results for the bulk phase transition.
The HDR model has been studied by Monte Carlo (MC)
computer simulation [15]. For aspect ratios y larger than =6
a nematic phase seems to be stable. The transition appears to
be continuous, of the Kosterlitz-Thouless type. Therefore, we
would expect our mean-field functional to predict a continu-
ous transition from the isotropic (¢=0) to the nematic (g
#0) phase. This is indeed the case. In Fig. 2(a) we compare
the results for the pressure-density equation of state with the
results from MC simulation. Overall the agreement is good.
The arrow indicates the location of the continuous transition,
which takes place at 7=0.257 (quite close to the result
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FIG. 2. (a) Equation of state (reduced pressure vs packing frac-
tion) of a fluid of HDR with aspect ratio y=15. Symbols are simu-
lation data of Bates and Frenkel [15]. Continuous line is the result
from density-functional theory. Arrow indicates packing fraction at
which nematic phase bifurcates from isotropic phase. (b) Nematic
order parameter as a function of packing fraction for the same sys-
tem as in (a).

from scaled-particle theory, 7=0.248) and at a reduced
pressure pv,/kT=0.98. Estimates from simulation give 7y
=0.363, a much higher value. Nevertheless, the simulations
show strong system-size dependence of the nematic order
parameter, as corresponds to a phase with quasi-long-range
nematic order. Figure 2(b) shows the nematic order param-
eter as obtained from the density-functional theory. As ex-
pected, the order parameter becomes nonzero abruptly at the
second-order phase transition.

Having obtained the bulk thermodynamic properties of
the fluid, we now turn to the confined fluid and study its
thermodynamic behavior and structural quantities: density,
order-parameter, and director fields.

B. Phase behavior of confined fluid

The external potential [Eq. (11)] is known to favor a ho-
meotropic (i.e., perpendicular to the wall) orientation of the
fluid next to a flat wall. This has been shown in three dimen-
sions using density-functional theory [18] and also in two
dimensions by simulation [9]. Our present calculations in-
deed show this to be the case for the present setup. The
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FIG. 3. Schematic of possible structures for the director field
inside a circular cavity with homeotropic anchoring conditions. (a)
Radial, R, configuration with a central point defect of charge
k=+1. (b) Polar, P, configuration with two repulsive point defects
of charge k=+1/2. (c) Uniform, U, configuration with the director

approximately uniform in the whole cavity. “a” and “b” define two
perpendicular diameters, the first along the defect line.

reason is that, even though the potential is neutral with re-
spect to the orientation of a single particle, the favored ori-
entation of a dense layer of adsorbed particles is homeotropic
since in this way the free area per particle (including coupled
surface and particle exclusion) is maximized. Note that the
surface does not impose any specified values on density or
order parameters, i.e., the surface does not act as a boundary
condition in the model: the fluid will pay a free-energy cost
in case the homeotropic orientation were not favored, and the
surface values will result consistently from the theory. How-
ever, if this surface condition is perfectly satisfied, the de-
fects have necessarily to be created in some regions of the
cavity. The only way the fluid has to avoid the formation of
defects is by not completely satisfying the homeotropic ori-
entation at and near the surface.

From the previous discussion, we may think of three pos-
sible structures in the small-radius cavity (see Fig. 3): (i)
radial (R), with a point defect of charge k=+1 at the center
(positive winding number); (ii) polar (P), with two repulsive
point defects of charge k=+1/2 located symmetrically with
respect to the center of the cavity along one of its diameters;
and (iii) uniform (U), with the director field more or less
uniform. In the latter case the surface energy is not opti-
mized, but elastic energy is low and there are no defects
inside the cavity, whereas in the first two cases, R and P, the
surface energy is minimized, but the fluid incurs an elastic
free-energy cost and a contribution from defect-core energy.
The U configuration may be considered as an extreme case
of the P configuration, where the two defects are right at the
surface at opposite ends. A further “escape” configuration,
with an everywhere continuous director field, is only pos-
sible in (3D) cylindrical geometry, the escape direction being
the cylinder axis. The relative stability of the R and P con-
figurations will depend on the cavity radius R but also on the
thermodynamic conditions and the material constants. Note
that, contrary to the situation in 3D point defects [16,17],
where the director may adopt a nonsingular biaxial configu-
ration (e.g., by means of a ring disclination line), the defect
cores are always isotropic here, which is the only possibility
that avoids the director singularity.

The three possible configurations, R, P, and U, can be
qualitatively described by means of a single parameter, d,
defined as the distance between the two defects of Fig. 3(b).
We then have dy=0 for the R structure, 0 <d,<<2R for the P
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FIG. 4. (Color online) Contour plots with respect to xy coordi-
nates for local packing fraction # (upper row), nematic order pa-
rameter ¢ (middle), and director tilt angle WV (lower) for two con-
figurations with the same grand potential in a cavity of radius
R=25.4D at relative chemical potential Au=2.75kT. Left column
corresponds to a U configuration, while right column is a P con-
figuration. xy coordinates in units of D, and tilt angle is given in
degrees.

structure, and dy=2R for the U configuration. Therefore, it
what follows, we will use d, as the relevant structural quan-
tity.

Our results indicate that, for small cavity radii R, there is
a competition between two structures with different values of
dy. In Fig. 4 contour plots for local packing fraction 7, nem-
atic order parameter ¢, and tilt angle ¥ are shown for two
structures that have the same value of cavity grand potential,

Q, for R=25.4D and Au=2.75kT (here Au=p—pq is the
chemical-potential difference with respect to the bulk transi-
tion). From this figure one can interpret the two structures as
corresponding to a U configuration (left column) and a P
configuration (right column). In the U configuration the tilt
angle W is almost constant in the cell, and the only feature
reminiscent of a defect is the slight modulation in order pa-
rameter. In general, density modulations are weak, except in
the P configuration in a region surrounding both defects. The
nematic order parameter is depleted in small, more or less
circular, regions around each defect in the P state.

The locus of points in the Au—R plane where QU=QP
traces a curve which separates U and P configurations, with
the U structure being favored for small cavity radii. The
values of d,, and {(g) (average order parameter in the cavity)
for the two structures, as a function of A, are plotted in Fig.
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FIG. 5. (a) Defect separation dj, as a function of relative chemi-
cal potential Ap (with respect to value of bulk transition) for a
nematic inside a cavity of radius R=23.8D=1.49(L+D). (b) Aver-
age nematic order parameter in the cell (g) vs relative chemical
potential for the same conditions. In both panels the dashed vertical
lines indicate the location of the transition (using the criterion of
equal cavity grand potentials), and the dotted lines correspond to
metastable states. Dot-dashed line in (a) is the value of the cavity
diameter.

5 for fixed R. As the chemical potential is increased from low
values, i.e., from the P configuration close to the bulk value
(Au=0), defects increase their separation very slowly [Fig.
5(a)]. Suddenly, the defect separation jumps to a high value.
There are metastable states in the P and U branches (dotted
lines in the figure). The diameter of the cavity, 2R, has been
indicated by a horizontal dot-dashed line in the figure. We
see that in the U configuration the defects are located at a
distance less than one particle length from the surface (i.e.,
mesoscopically they are at the surface) and that this distance
does not change much. In Fig. 5(b) the spatial average of the
nematic order parameter over the cell is plotted. As expected,
it increases with Au. The transition from the P to the U
states looks like a phase transition of the first order accom-
panied by discontinuities in the nematic order parameter.
Since this is occurring in a finite system, it is only a
pseudophase transition.
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FIG. 6. Packing fraction #», nematic order parameter ¢, and tilt
angle W of the two configurations with the same grand potential in
a cavity of radius R=23.8D=1.49(L+D) at relative chemical poten-
tial Apu=1.55kT. Continuous lines: U configuration. Dashed lines:
P configuration. [(a)-(c)] Path a and [(d)—(e)] path b, both as de-
fined in Fig. 3(b).

Before proceeding further, it is necessary to discuss a
point concerning the procedure used to minimize the free
energy, specifically, how the initial configurations to initiate
the conjugate-gradient procedure are chosen. The U configu-
ration poses no problem, as configurations with constant val-
ues for density, order parameter and tilt angle quickly lead to
minimum free-energy states. However, the P configuration
contains two defects, and the positions of these defects are
slow variables: finding the equilibrium state takes a lot of
iterations to complete. In practice, we have performed partial
minimizations at fixed defect separation d, which gives an
effective free energy as a function of d. From this curve we
locate the equilibrium value d, where the free energy is mini-
mum and then perform a full minimization.

Figure 6 shows the profiles along the two cavity diameters
indicated in Fig. 3(b). Panels (a)—(c) correspond to path “a,”
which goes along the diameter containing the two defects,
while panels (d)-(f) refer to path “b,” perpendicular to the
previous one. Profiles of configurations U and P are indi-
cated by continuous and dashed lines, respectively. The de-
fect position is clearly visible in panel (b): the nematic order
parameter goes to zero exactly at the defect center, which
unequivocally determines its position. Note that in this case
the order-parameter profile exhibits a maximum at a slightly
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L
16 20 24 28 32 36 40 44 48 52
R/D

FIG. 7. Stability diagram in the plane relative chemical potential
Ap vs cavity radius R. Continuous line: P—U transition line.
Dashed line: curve defined by the inflection point of the dy(Au)
characteristic. Open circle: terminal point for P—U transition line.
Labels indicate the different stable configurations: P, polar; U, uni-
form; and /, isotropic phase. Schematic diagrams of director field in
each configuration are also shown.

shifted position with respect to the surface (an effect already
observed in density-functional [18] and MC studies [10] of
three-dimensional model fluids subject to the same external
potential).

By repeating the above procedure for different values of
the cavity radius, a “phase diagram” (stability diagram)
showing regions of stability of each configuration was con-
structed. This is shown in Fig. 7 in the chemical potential vs
cavity radius plane. The continuous line indicates a transition
line where the two structures have the same grand potential:
the U phase, with d,=2R, stable for small cavities and the P
phase, having d,<2R, stable for the larger cavities. The
slope of the transition line in the Au-R plane is very high,
which reflects the strongly structural character of the transi-
tion. However, the line ends in a terminal point at R,
=23.6D and Ap,.=1.36kT, where the two configurations can-
not be distinguished. At high chemical potential the simula-
tions of Bates and Frenkel [15] predict a transition from the
nematic to the crystal phase at packing fractions 7==0.8,
which are well above those shown in our figure. Therefore
we expect that the P—U transition be stable in a wide range
of chemical potentials with respect to spatially ordered
phases.

Our results are in agreement with those of Dzubiella et al.
[9], who performed MC simulations on the same model fluid.
The aspect ratios considered by these authors were x
=16-21, with cavity radii R/L=9-13. In all cases they ob-
served a stable phase with two defects of charge k=+1/2,
which is in agreement with the present results. The MC
simulations of Andrienko and Allen [10] on a fluid of hard
ellipsoids of aspect ratio y=15 confined in a (3D) cylindrical
cavity also agree with our results. The external potential used
by these authors was also the same as that studied here, and
for all values of radius considered (2-5 particle lengths) they
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found a stable configuration with two disclination lines of
charge k=+1/2. It is interesting to note that the order-
parameter profiles obtained by Andrienko and Allen are very
smooth and do not present strong oscillatory behavior, a fea-
ture also present in our density-functional profiles. This gives
some support to our approach, which does not use averaged
densities of the type used in more elaborate density-
functional theories for strongly inhomogeneous fluids of hard
spheres, and may indicate that the highly frustrated state of
the nematic inside the cavity induces smoother density and
orientational distributions than what would otherwise corre-
spond to such restricted geometries.

C. Analysis in terms of elastic theory

The P-U transition found may be understood in the con-
text of elastic theory [1]. Let us consider the two extreme
cases dy=0 (pure R state) and dy=2R (pure U state with no
elastic deformation) and analyze their relative stability, as-
suming density and order parameter to be constant through-
out the cell and equal to their bulk values. The excess free
energy with respect to the bulk nematic has elastic, surface,
and defect-core contributions. In the U configuration the only
nonzero contribution is the surface contribution, which is
optimized in the R configuration, but here the director field
presents a pure splay deformation. In the latter the free en-

ergy is

R
FR = 7k, logr— —2@bR + FR, (15)
n
where k; is the splay elastic constant, r, is the radius of the
k=+1 defect core, Ff is its free energy, and b >0 gives the
surface contribution. For the U configuration

FY=2maR, a>0. (16)

The difference in free energies is then

AF=F® - FU =k, log£ +FY-2m(a+b)R, (17)
which, assuming F, and r, to be constant with R, is always
negative for large cavities since the elastic energy only grows
logarithmically, i.e., the R phase is expected to be more
stable. Depending on the type of surface and liquid crystal, it
is plausible that, for small cavities, the free-energy balance
can be inverted, and the U phase might become more stable.

In our density-functional model, the stable phase found is
of the P, rather than R, type, i.e., the model predicts that it is
more stable to create two k=+1/2 defects than a single k=
+1 defect. In the simple theory, the elastic contribution of the
P configuration is also logarithmic with the cavity radius, but
it is half the value in the R configuration [19]:

’7Tk1

Fr=—t
2

R »
logr—+Fn—27TcR, c>0. (18)
n
The defect contribution F¥ will include two core energies
plus interaction energy between the two defects. The first is
proportional to k* so that we expect it to be less than Fff by
a factor of order 2, but there is repulsion between the k=
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FIG. 8. (a) Defect separation d, as a function of relative chemi-
cal potential Ax (with respect to value of bulk transition) for a
nematic fluid inside a cavity of radius R=50.77D=3.17(L+D). (b)

Average nematic order parameter in the cell (g) vs relative chemical
potential for the same conditions.

+1/2 defects, adding a positive contribution. Therefore, in
the framework of elastic theory it is impossible to make pre-
dictions concerning the balance between the R and P con-
figurations in small cavities, but for large cavities, where
defect repulsion becomes less important, the P configuration
is favored.

D. Separation between defects

In this section we consider the case where the cavity ra-
dius is large and, therefore, the P configuration is always
stable. We will study how the separation between the two
defects of charge k=+1/2 increases with chemical potential.
In this regime no discontinuous change in d, occurs, but
there are some features which are worth discussing.

Figure 8 illustrates a typical case, R=3.17(L+D), which
is approximately 2.1 times the value considered before (Fig.
5). We see, in panel (a), that d,, first increases steadily (a
typical point is 1), then very rapidly (point 2), i.e., defects
separate very quickly, and finally d, levels off (point 3).

PHYSICAL REVIEW E 79, 061703 (2009)

TABLE L. Equilibrium defect distance d.q and surface-defect
distance s for different cavity radii R.

RID dey/ 2R sIR
50.8 0.41 0.59
63.7 0.39 0.61
95.7 0.39 0.61

Saturation settles at a value deq245D, similar to the case
represented in Fig. 5 but with the important difference that
now the cavity diameter is 2R=101.54D, and therefore, the
defects are far from the surface: the corresponding distance
is s=R—d,q/2=28.3D. The average order parameter, panel
(b), exhibits a smooth behavior with no discontinuity. The
region at which defects separate quickly from each other
occurs at chemical potentials closer to the bulk transition
than in the previous case: Au=0.50kT, to be compared with
Ap=1.55kT for R=1.49(L+D).

On increasing the radius further, the saturation defect dis-
tance becomes larger. For example, for the same chemical
potential, but with cavity diameter 2R=7.96(L+D)
=127.4D, the saturation value is deq: 53D so that s=37.2D.
In the case 2R=191.4D we have s=58.2D. Clearly the equi-
librium distance between the defects or the equilibrium dis-
tance between surface and defect is the result of a balance
between the repulsive interaction between defects and the
repulsive interaction between defect and surface, which are
both long-ranged. For very large cavities it is plausible that
an asymptotic distance would be reached although this re-
gime we are not able to probe due to computational limita-
tions.

An interesting observation is that the equilibrium defect
distance deq or the surface-defect distance s, scale with R, the
cavity radius. Table I summarizes the values found for the
systems investigated. The lack of perfect scaling may be at-
tributable to minor inaccuracies in the minimization with re-
spect to d since small changes in d about the equilibrium
value give rise to very small changes in the free energy.

Yan and Rey [20] analyzed a very similar system, but
with discotic particles, and in the framework of elastic
theory. They concluded that the defect separation scales with
cavity diameter as d,,/2R=5""%=0.67, larger than our find-
ing. However, the authors neglected the curvature of the sur-
face and assumed the director distortions to be induced by
mirror defects of opposite charge along the line joining the
real defects (similar to the “method of images” in electrostat-
ics), an approximation valid in the context of elastic theory.
In addition, Yan and Rey used a uniform order parameter and
a single elastic constant and neglected the defect core energy.
These assumptions may be important when comparing with
the density-functional results; in particular, the surface does
certainly induce inhomogeneities in density and order param-
eter, and the curvature may somehow renormalize the scaling
constant. Nevertheless, scaling seems to operate in both
theories.

IV. RELATION WITH BULK TRANSITION

We have already shown the structural quantities in the P
configuration when the cavity radius is small R=1.49(L
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FIG. 9. Packing fraction 7 (continuous line), nematic order pa-
rameter g (dashed line), and tilt angle ¥ (dotted line) along path a
[see Fig. 3(b)], for a fluid at Au=2.75kT inside a cavity of radius
R=63.7D=3.98(L+D).

+D) (Fig. 6) and demonstrated that this structure is very
smooth. This figure corresponds to a case where three den-
sity maxima along the defect diameter (path a) occur in the
cavity, but another one is about to appear, which causes a
broad central peak in density. The region between the two
defects is a region with low orientational order, g =0.2.

Let us now examine the case Au=2.75kT but for a larger
cavity, 2R=63.7D. Figure 9 shows the structural quantities
along the same path. Now in the region between the two
defects the orientational order is high, ¢ =0.8. The obvious
conclusion is that the orientational order in the region be-
tween the defects is going to depend on d,, which in turn
depends on R and u. Figure 10 contains the nematic order
parameter for the three cases indicated in Fig. 8 as 1 (dotted
line), 2 (dashed line), and 3 (continuous line). From these
results it seems clear that the fast separation between defects
is associated with a strong increase in order in the region
between the defects. This, together with the fact that the
value of u at which the rapid increase in d, occurs ap-
proaches the bulk transition value as the radius becomes
larger, leads to the obvious conclusion that the abrupt

Ir
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FIG. 10. Nematic order parameter along path a in Fig. 3 for a
cavity of radius R=50.77D=3.17(L+D) for three values of chemi-
cal potential: Au=-0.05kT (dotted line), 0.45kT (dashed line), and
1.67kT (continuous line).
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changes are reminiscent of a isotropic-nematic transition.
This “confined isotropic-nematic transition” is indicated in
the stability diagram (Fig. 7) by a dashed line, separating the
U configuration from a configuration with a large central
region exhibiting orientational disorder (indicated in the dia-
gram by the label “I”). The fact that this line has A >0 is to
be expected, as the circular cavity tends to frustrate the order.
This transition cannot be a true phase transition since it oc-
curs in a system with confined geometry in all directions,
i.e., in a truly finite system, which means that fluctuations
(and consequently the phase transition) are suppressed alto-
gether.

V. DISCUSSION AND CONCLUSIONS

The system studied, a fluid of elongated hard particles in
a circular cavity, is subject to opposing fields that introduce
frustration effects: the surface induces homeotropic orienta-
tion of the director field, but then the circular geometry de-
mands the creation of point defects, i.e., defect-core and elas-
tic free-energy contributions. The problem is similar [21] to
the planar hybrid cell problem, consisting of two opposite
surfaces that induce antagonistic orientations (say homeotro-
pic and planar). In our case one of the surfaces is the cavity
wall, while the other “surface” is the geometric center of the
cavity. In the same way as in the planar hybrid cell, frustra-
tion may induce defective regions where the order parameter
locally goes to zero, which optimizes surface energy while
relaxing elastic strain, but this adds defect energy; the only
way the fluid may get rid of this free-energy contribution is
by adopting a uniform configuration, i.e., by not optimizing
the surface energy contribution at the two surfaces simulta-
neously.

The interplay between the different configurations, i.e.,
the structural P—U transition, affects and might in fact be
related to the isotropic-nematic transition. In our present
model this connection could not be established since there is
no true phase transition due to the completely restricted ge-
ometry; however, there are traces of it, and a “ghost phase
boundary” can be calculated. This boundary behaves like a
frustrated transition line, i.e., confinement and frustration de-
lays (and, strictly speaking, suppresses) complete nematiza-
tion (cf. planar hybrid cell) in the cavity. The ghost phase
boundary line could be somehow related to the structural
transition (Fig. 7), a feature that should be studied more
properly in a geometry where the transition actually exists as
a true phase transition, for example, in cylindrical geometry.
A related problem in 3D, where a disclination line induces
nucleation of the isotropic phase, was discussed by Mottram
and Sluckin [11].

As a final comment, we note that in the present calcula-
tions the chemical potential has been set deliberately to val-
ues close to the bulk isotropic-nematic transition in order to
avoid the stabilization of phases with spatial order (i.e., the
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crystal phase). A smectic phase does not appear to be stable
in bulk [15] although a layered phase could be stabilized in a
flat confined geometry (2D slit pore).

Obvious extensions of the present work include the evalu-
ation of defect core energies and a detailed comparison with
elastic energies, the extension to larger cavities, and the
study of 3D problems. The latter system will demand a larger
computational effort, but work along this line is already un-
derway.
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