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Enhanced colloidal transport in twisted magnetic
patterns
Nico C. X. Stuhlmüller 1, Thomas M. Fischer 2 & Daniel de las Heras 1✉

Bilayers of two-dimensional materials twisted at specific angles can exhibit exceptional

properties such as the occurrence of unconventional superconductivity in twisted graphene.

We demonstrate here that novel phenomena in twisted materials emerges also in particle-

based classical systems. We study the transport of magnetic colloidal particles driven by a

drift force and located between two twisted periodic magnetic patterns with either hexagonal

or square symmetry. The magnetic potential generated by patterns twisted at specific magic

angles develops flat channels, which increase the mobility of the colloidal particles compared

to that in single patterns. We characterize the effect of the temperature and that of the

magnitude of the drift force on the colloidal mobility. The transport is more enhanced in

square than in hexagonal twisted patterns. Our work extends twistronics to classical soft

matter systems with potential applications to lab-on-a-chip devices.
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The emerging field of twistronics1 studies the properties of
bilayers of two-dimensional materials that are rotated
relative to each other by a twist angle. Twisted bilayers

generically create a quasiperiodic moiré pattern. However, for
specific twist angles, the pattern is periodic with a super unit cell
that is a multiple of the primitive unit cell of a monolayer.
New properties, not present in the individual monolayers, can
emerge in the resulting moiré superlattices2–4. These include
superconductivity5,6, ferromagnetism7, and correlated insulating
states8–11 in twisted bilayer graphene. The formation of moiré
patterns in twisted materials also affects the properties of both
light12–16 and acoustic waves17–20.

We extend here twistronics to a classical, particle-based, system
made of magnetic colloidal particles that are located between two
periodic magnetic patterns and are driven by a weak drift force.
The patterns are twisted at a small angle. For specific magic
angles, a partial destructive interference between the magnetic
fields of the patterns generates flat channels in the total magnetic
potential which results in enhanced long-range anisotropic col-
loidal transport. We study with Brownian dynamics simulations
the effect of the twist angle, the temperature, and the magnitude
of the drift force on the mobility of the particles for both square
and hexagonal twisted patterns. Our results and conclusions may
apply to other twisted materials and constitute the basis for novel
lab-on-a-chip applications.

Results
Setup. We study the motion of paramagnetic colloidal particles
confined to the middle plane between two parallel periodic
magnetic patterns that are separated by a distance Δ, see Fig. 1a.
We consider both square and hexagonal periodic lattices with
regions of positive and negative magnetization normal to the
pattern. The patterns are twisted by an angle α and shifted by half
a unit lattice vector.

A uniform external magnetic fieldHext, much stronger than the
pattern fields (Hp,i with i= 1, 2) points normal to the patterns. At
vertical distances comparable or larger than the size of the unit

cell, i.e., Δ≳ a with a the magnitude of the lattice vectors, the
total magnetic potential is dominated by the coupling between
external and pattern fields: Vmag∝−∑iHext ⋅Hp,i. Hence, only
the components of the pattern fields normal to the patterns
contribute to the potential. The magnetic potential of single
square and hexagonal patterns in presence of Hext is shown in
Fig. 1b. Details about the calculation of Vmag are provided in
Methods.

Using single patterns it is possible to transport the particles via
modulation loops of the orientation of the external field21,22. The
loops are closed such that the orientation returns to its initial
value after one loop. Loops that wind around special directions of
the external field transport the particles by one unit cell after
completion of the loop. The transport is topologically protected
since the precise shape of the loop is irrelevant, only the winding
numbers around the special directions determine the transport.
Here, we explore a different type of transport. We keep the
external field constant in time and apply a uniform static external
drift force, fd, in the plane parallel to the patterns, see Fig. 1a. We
calculate the particle trajectories using overdamped Brownian
dynamics simulations. Hence, the equation of motion for a single
particle reads:

ξ _r ¼ �∇VmagðrÞ þ fd þ η; ð1Þ

where ξ is the friction coefficient against the (implicit) solvent, _r is
the time derivative of the position vector, and η is the delta-
correlated random thermal force with standard deviation and
amplitude given by the fluctuation-dissipation theorem. We work
in units of the magnitude of a lattice vector a, the energy
parameter of the magnetic potential ε (see Methods), and the
friction coefficient ξ. The intrinsic time-scale is τ= ξa2/ε and
absolute temperature T is measured in reduced units kBT/ε with
kB the Boltzmann constant.

The amplitude of the drift force is small compared to the
magnetic forces. Hence, colloidal transport is not possible above a
single pattern lacking flat channels. If the temperature is not high
enough to overcome the potential barriers, the particles simply

Fig. 1 Setup. a Paramagnetic colloidal particles immersed in a solvent are placed between two periodic and parallel magnetic patterns twisted by an angle α
and shifted by half a lattice vector. The magnetization of the patterns is indicated by the white and black arrows. A uniform external magnetic field Hext

points normal to the patterns. A drift force fd points in the plane of the patterns. b Magnetization and magnetic potential Vmag of single square and
hexagonal patterns. A unit cell together with the lattice vectors ai, i= 1, 2 are indicated in yellow. The shift vectors applied to the twisted system, a1/2, are
represented in blue. The shift vectors connect points with fourfold (green square) or sixfold (violet hexagon) symmetry to points with twofold symmetry
(orange rectangles). The trajectories of a particle above only one of the patterns and located in the central unit cell are plotted in red and indicated by black
arrows (drift force fda/ε= 10). The temperature is set to kBT/ε= 0.01 (square pattern) and kBT/ε= 1 (hexagonal pattern).
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diffuse near the minima of the magnetic potential, see
characteristic trajectories in Fig. 1b. The situation is different
for the case of twisted patterns.

Enhanced transport in twisted patterns. At specific twist angles,
the so-called magic angles, a periodic moiré pattern with super-
cells of size roughly given by a=ð2 sinðα=2ÞÞ develops in the
magnetic potential, see Fig. 2 and Supplementary Fig. 1. At a
magic angle αpm with p= {sq, hex} for square and hexagonal
patterns, respectively, a lattice site of the twisted pattern coincides
with another lattice site of the other pattern (see Methods). At the
center of the supercells Vmag resembles that of the underlying
square or hexagonal patterns. However, near the edges of a
supercell, a change towards a twofold symmetry (stripes) occurs.
The stripes in Vmag are almost flat compared to the inner regions
due to a partial destructive interference of the magnetic field of
both patterns. A small drift force is therefore able to push the
particles along the edges of the supercells, while its effect is
negligible for particles inside the supercells, see particle trajec-
tories in Fig. 2 and Supplementary Movies 1, 2.

The patterns are shifted by half the first lattice vector such that
points with different rotational symmetries (see Fig. 1b) coincide

in the combined system. The shift creates a twofold symmetric
point of the magnetic potential at the origin (axis of rotation).
This is only possible by shifting the patterns by half a lattice
vector and it maximizes the destructive interference between the
fields of both patterns. Any lattice vector can be used since the
resulting magnetic potentials are the same up to a global rotation.
The shift generates a combined pattern which is anisotropic. The
curvature of the magnetic potential at the edges of the supercell
is either negative (Vmag is minimum) or positive (Vmag is
maximum), see Fig. 2 and Supplementary Fig. 1. For weak drift
forces, the particles are transported only along the edges for
which the potential is a minimum. In analogy to the flat bands
that occur in reciprocal space in twisted graphene3, we call these
edges in real space flat channels. It is worth mentioning that there
exists a correspondence between real space and reciprocal space,
and that flat channels in real space, similar to those in Fig. 2, also
occur in twisted bilayers of 2D materials23. At magic twist angles,
the flat channels of neighboring cells are connected and the
particles can be transported over macroscopic distances.

The roughness of the potential increases progressively from the
edges towards the center of the supercell. At multiple distances of
a from an edge with a flat channel and parallel to it there exist
secondary channels. Secondary channels also occur parallel to the
edges for which Vmag is maximum. There, the first two secondary
channels are located at a distance of a/2 from the edge. Along the
secondary channels, the magnetic potential is still flat enough to
support transport for either strong driving or high temperature as
demonstrated below. The smaller the magic angle, the larger the
supercell is and more secondary channels are sufficiently flat to
transport particles. In addition, the potential along both the
secondary and the flat channels gets flattened by decreasing the
twist angle. For all magic angles, the flat channel (located at the
edges of the supercell) is always the flattest one and requires
therefore the minimal drift force to transport particles.

Critical drift force. To investigate the minimal (critical) drift
force fc required to achieve macroscopic transport, we point the
drift force along the average direction between two consecutive
flat channels, see Fig. 2 and Methods, and set the temperature to
zero such that the diffusive motion due to thermal fluctuations
does not hinder the phenomenology. Then we measure the
mobility of the colloidal particles, μ, defined as the average
velocity divided by the amplitude of the drift force, see details in
Methods. The mobility vanishes for small drift forces, increases
abruptly at a given critical value fc, and it saturates for strong drift
forces, see illustrative examples in Fig. 3a. The value and the
behavior of the critical drift force depend on both the type of
pattern and the magic angle αpm, see Fig. 3b.

At the corners of a supercell (intersection between two edges),
the magnetic potential has more structure than in the center of the
edges, see Fig. 2. Hence, for both hexagonal and square twisted
patterns, the transport along the edges of the supercells requires
weaker drift forces than the transport over the corners. The
particles spend a significant amount of time crossing the corners.
This effect can be observed in Supplementary Movies 1 and 2
which show the particle dynamics in square and hexagonal twisted
patterns, respectively. Plots of the crossing time at the corners for
different temperatures and magnitudes of the drift force are shown
in Supplementary Fig. 2. In square twisted patterns the height of
the magnetic potential near the corners increases with the twist
angle, and also the potential at the edges becomes rougher. These
two effects cause the critical force to increase monotonically with
the twist angle, Fig. 3b. In the limit αsqm ! 0 the critical force
vanishes and macroscopic transport occurs for an infinitesimally
small drift force. Note that in the limit of vanishing twist it is also

Fig. 2 Twisted patterns. Magnetic potential, Vmag, in square (a) and
hexagonal (b) twisted patterns. The patterns are twisted at a magic angle of
αsqm � 4:24� in (a) and αhexm � 4:41� in (b) around the axis normal to the
patterns that passes through the origin (blue circle). The lattice vectors, a1
and a2 with a1 parallel to the x-axis, of the untwisted pattern are
represented with yellow arrows. The untwisted pattern is shifted by a1/2. A
supercell (green solid line) and a unit cell (dashed yellow line) of the
twisted patterns is highlighted in each pattern together with trajectories
followed by both, particles transported via flat channels and particles stuck
inside the supercells, as indicated. The magnitude of the drift force is
fda/ε= 10 and its direction is indicated by a green arrow. The temperature
is kBT/ε= 0.01 in (a) and kBT/ε= 0.8 in (b).
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necessary to have both patterns in order to create a destructive
interference along the direction of the shift.

In twisted hexagonal patterns, the potential at the edges of the
supercells also gets rougher by increasing the twist angle. However, in
contrast to twisted square patterns, the potential at the corners of a
supercell becomes flattened by increasing the magic angle. The
balance between these opposing effects generates a non-monotonic
critical force in hexagonal twisted patterns, Fig. 3b. By increasing the
magic angle, the critical force first decreases, then it reaches a
minimum at αhexm � 6:01�, and finally it increases again.

Direction of the drift force. To investigate the effect of the
direction of the drift force, we fix the twist angle to a magic angle in
hexagonal patterns and calculate the critical force as a function of Δd,
which is the angle between the drift force and the average direction
between two consecutive flat channels. Any deviation of the drift
force from the average direction between two consecutive flat
channels increases the critical force, see Fig. 3c. For deviations larger
than those shown in Fig. 3c transport along the flat channels is no
longer possible. Instead, a drift force (~200 ε/a) stronger than the
magnetic forces of the single patterns is then required to transport the
particles that no longer follow the flat channels. We also show in
Supplementary Fig. 3 the critical force as a function of the magic
angle for different directions of the drift force.

Finite temperature. We next characterize the effect of Brownian
motion on colloidal transport. We show in Fig. 4 the dynamical

phase diagram of the colloidal mobility in the plane of temperature
and magnitude of the drift force for patterns twisted at a magic angle.

The highest mobility occurs for strong forces and low
temperatures. By increasing the temperature at a constant
magnitude of the drift force, the mobility first decreases and then
increases again. This effect is more prominent in the square case,
Fig. 4a, although it also occurs in hexagonal twisted patterns, Fig. 4b.
The first minimum in the mobility is caused by particles getting
scattered off the central flat channel due to Brownian motion. (A
conceptually related Pomeranchuk effect in twisted graphene24,25 in
which increasing temperature induces a metal-insulator transition
has been recently observed.) The secondary channel does not allow
for macroscopic transport in a given range of temperatures and
force amplitudes. However, a further increase in the temperature
allows transport along the secondary channel (larger thermal
fluctuations permit the particles to cross the potential barriers)
and the mobility increases again. At even higher temperatures the
mobility decreases again since particles get scattered into the next
secondary channel. This oscillatory behavior in the mobility
continues until the thermal energy is large enough compared to
the magnetic potential energy and the transport becomes diffusive.

A similar argument explains also the negative differential
mobility observed by increasing the magnitude of the drift force
at finite temperature (T > 0). First μ increases, as expected, and
then it decreases. If a particle leaves the flat channel at the corners
of a supercell (due to Brownian motion), it is driven away from
the corner faster for stronger fd. This decreases the mobility since
the probability that a particle returns to the flat channel decreases

Fig. 3 Critical force. a Mobility μ in twisted square patterns as a function of the magnitude of the drift force fd for three magic angles. The vertical arrows
indicate the value of the critical forces for each magic angle. b Magnitude of the critical force fc required to transport particles at T= 0 as a function of the
magic angle αpm in twisted square (green) and hexagonal (blue) patterns. The dashed green line is a linear fit for magic angles αsqm <4� in twisted square
patterns. The critical force extrapolates to zero in the limit αsqm ! 0. c Magnitude of the critical force fc as a function of the direction of the drift force Δd

(measured as the angle formed by the drift force and the optimal drift force). Data at T= 0 for hexagonal patterns twisted at a magic angle αhexm � 4:41,
indicated with a vertical arrow in (b). Dotted lines in panels (a) and (c) are guides for the eye.
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with the distance to the corners. A further increase in the drift
force enables transport along a secondary channel and hence
increases the mobility again. This oscillatory behavior seems to
continue until the external drift force completely dominates the
magnetic forces.

In square twisted patterns, the secondary channels that are first
activated for transport are those located at a distance a/2 from the
edges for which Vmag is maximum (the edges without flat
channels), see Supplementary Movie 3. There the potential is
flatter than along the secondary channels located at a distance a
from the flat channels and parallel to them. In contrast, in twisted
hexagonal patterns, the active secondary channels are those
parallel to the flat channels. Transport along the secondary
channels located in edges where Vmag is maximum does not occur
simply because fd is perpendicular to those channels. Supple-
mentary Movies 4 and 5 show the motion of particles in twisted
hexagonal patterns using a flat and a secondary channel,
respectively. (In Supplementary Movie 4 at time t= 11.48τ, a
particle jumps from a secondary channel into the flat channel,
where it is transported much faster.) The different type of
secondary channels active for transport in square and hexagonal
twisted patterns is likely the reason behind the different
amplitudes of the second peak of the mobility in the dynamical
phase diagrams, see Fig. 4.

Critical force and transport for non-magic angles. So far we
have discussed the transport in patterns twisted at magic angles.

For non-magic angles, the magnetic potential is in general no
longer periodic but quasiperiodic (there exist other non-magic
angles for which the potential is also periodic but the unit cell
contains several supercells different from each other and the
transport is not optimal, see Methods and Supplementary
Note 1). For non-magic angles, each supercell differs slightly from
its neighbors and the flat channels are not as flat as those at a
magic angle. As a result the drift force required to transport the
particles increases as compared to the magic case.

For a nonperiodic magnetic potential, the critical force depends
on both the initial location of the particle and the required
traveled distance that is imposed a priori to calculate fc. In Fig. 5
we plot fc as a function of the twist angle (scaled with the magic
angle) for square and hexagonal twisted patterns. The force is
calculated by averaging over a total of 100 trajectories of particles
that are at time zero-initialized on different flat channels. Three
data sets corresponding to the average critical force required to
transport the particles a distance equivalent to the length of 10,
100, and 1000 supercells are shown. The critical force has a sharp
minimum at the magic angle which gets narrower by increasing
the traveled distance used to compute fc. The non-smooth
behavior of the critical force at non-magic angles is to be expected
due to the Diophantine equations that determine the periodicity
of twisted patterns, see Methods and Supplementary Note 1. We
show in Supplementary Note 1 that for any angle for which the
potential is nonperiodic the particles encounter at some point the
most unfavorable magnetic potential along the flat channel.

Fig. 4 Dynamical phase diagram. Colloidal mobility μ (see color bar) in the plane of magnitude of the drift force fd and temperature T for twisted a square
patterns at a magic angle αsqm � 4:24� and b hexagonal patterns at a magic angle αhexm � 4:41�. The white dots indicate the selected temperatures and
magnitudes of the drift force simulated to create the plots. The blue and red arrows indicate the position in the diagrams of selected state points.
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Hence, even the smallest deviation from a magic angle causes a
substantial increase of the critical force required to transport the
particles indefinitely (continuous flow).

In hexagonal twisted patterns, the continuous flow at non-
magic angles and strong drift forces occur as in the magic case via
the flat channels (at least for the deviations from the magic case
shown in Fig. 5). At drift forces even higher than those in Fig. 5b
the particles will eventually leave the flat channels in the
hexagonal twisted patterns and follow the direction of fd. In
square patterns, the particles leave the flat channels at non-magic
angles and large drift forces. Hence, the continuous flow happens
mostly through the entire pattern (see Supplementary Movie 6).
The flat channels are deeper and narrower in hexagonal than in
square twisted patterns which causes the differences in the
continuous flow at non-magic angles.

We plot in Fig. 6 the average distance dt traveled by a particle
located initially at the origin (fixed point of rotation) as a function
of the scaled twist angle α=αpm. Different magic angles αpm are
analysed at a fixed magnitude of the drift force. We show the
zero-temperature limit (Fig. 6a, b) as well as finite temperature
cases (Fig. 6c, d) for both squares (Fig. 6a, c) and hexagonal
(Fig. 6b, d) twisted patterns. The value of dt is sensitive to the

initial position of the particle. Nevertheless, these curves are
useful to understand the physical mechanisms behind particle
transport since their global characteristics are robust. The
magnitude of the drift forces is above that of the critical force
of the corresponding magic angle but below the magnitude
required to achieve continuous flow at non-magic angles (with
the exception of the red-solid lines in Fig. 6 in which fd is below
the critical force at the magic angle). The required drift forces and
therefore the traveled distances are higher in hexagonal than in
square twisted patterns. (Recall that the critical force is larger in
hexagonal than in square twisted patterns, see Fig. 3b.)

The zero-temperature limit reflects how the magnetic potential
changes with the twist angle. In the inset of Fig. 6a we show how
the traveled distance changes when the drift force acts during
longer periods of time t3 > t2 > t1 (see also Supplementary Movie 7).
In patterns twisted at a magic angle, the number of supercells
traveled is proportional to the time (provided that the drift force is
above the critical one). At non-magic angles, the particles hit at
some point a blocked corner/edge and stay there forever. The
smaller the deviation from the magic angle is, the further from the
origin this blocking occurs. As the twist angle approaches the magic
angle, the region around the fixed point of rotation becomes
increasingly similar to the magic case and therefore the particles
travel longer distances but they eventually hit a dead end and the
motion stops. In the limit of drift forces acting for an infinite period
of time and comparable in amplitude to the critical force of the
closest magic angle, the colloidal mobility at T= 0 is only different
than zero if the patterns are twisted at a magic angle.

At zero-temperature, dt grows discontinuously by approaching
the magic angle, Fig. 6a, b. The jumps in dt between two
consecutive plateaus correspond to roughly the distance traveled
across one supercell. Note that the larger scale of the plot in the
hexagonal case, Fig. 6b, hinders the visualization of the plateaus
but they still occur as shown in the inset.

The distance that the particles travel at the magic angle
increases by decreasing αpm in square twisted patterns and it
decreases in hexagonal patterns. This different behavior is, as in
the case of the critical drift force, due to how the magnetic
potential changes at the corners of the supercells by varying the
magic angle in each type of twisted pattern.

The effect of the critical drift force for magic angles is illustrated in
the data set for square patterns at αsqm � 4:24� (red line in Fig. 6a).
The magnitude of the drift force, fda/ε= 10, is below the zero-
temperature critical drift force for this magic angle, see Fig. 3, and
therefore the transport stops completely at an angle smaller than the
magic angle. However, thermal fluctuations are able to reactivate
the transport (red line in Fig. 6c). At finite temperatures (Fig. 6c, d)
the transport does no longer stop when a particle hits a blocking
region since Brownian motion allows the particle to traverse the
potential barrier (the mobilities are therefore different than zero). The
temperature enhances, in general, the transport at non-magic angles.
In both types of patterns, the effect is more prominent for small twist
angles (blue lines in Fig. 6). However, at magic angles (and provided
that the drift force is large enough to transport the particles at T= 0)
the traveled distance is smaller at finite temperature than at T= 0. At
magic angles, the magnetic potential is optimal for transport and
Brownian motion only reduces its efficiency.

Discussion
The patterns can be experimentally realized using e.g., exchange-
bias thin magnetic films irradiated through a lithographic
mask26,27 as well as garnet films28,29. Using micrometer-sized
colloidal particles at a distance comparable to the length of a
lattice vector above these patterns21,22 results in magnetic poten-
tial energies significantly larger than the thermal energy (at room

Fig. 5 Critical force at non-magic angles. Zero-temperature critical force fc
required to transport a particle as a function of the twist angle α scaled with
the magic angle αpm in a square αsqm ¼ 6:026� and b hexagonal αhexm ¼
6:009� patterns. The different data sets show the critical force required to
transport the particle at a distance equivalent to 10 (blue), 100 (orange),
and 1000 (green) lengths of a supercell. Data were obtained by averaging
over the trajectories of 100 particles initialized on different flat channels.
The distribution of the individual measurements is illustrated by the
shadow regions, which show the minimum and the maximum values of fc
required to transport 50% (dark regions) and 80% (light regions) of the
particles.
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temperature). Hence, the use of similar setups21,22 would result in
experiments on twisted patterns that are effectively close to the
zero-temperature limit. The observation of the finite temperature
effects discussed here should be possible by either decreasing the
magnetic forces (e.g., weaker patterns and larger colloid-pattern
distance) or increasing the Brownian force (using e.g., magnetic
nanocolloids). As in the case of single patterns21,22, we expect
good agreement between simulations and experiments in twisted
magnetic patterns.

Regarding the drift force, colloidal particles respond to several
types of external fields30. Gravitational31 and electric32 fields, as
well as pressure33 and temperature34 gradients, are possible means
to experimentally achieve such drift forces. We estimate that the
strength of the Earth’s gravitational field is above the critical force
required to transport micrometer-sized particles in solvents with a
significant particle-solvent density difference. Instead of a drift
force, it would be interesting to use self-propelled active particles35.
The twisted patterns could then be used to study and possibly tune
transport properties of active Brownian particles36, such as e.g., the
polarization37, in complex environments38.

The colloidal transport using flat channels in twisted patterns is
faster than the topologically protected transport in single
patterns21,22. There, the particles are adiabatically driven via mod-
ulation of the orientation of the external magnetic field. In twisted
patterns, topologically protected transport is also available and it can
be used to e.g., initially move the colloidal particles from the inside

of the supercells towards the flat channels. The availability of two
types of transport mechanisms, namely flat channels and topological
transport, together with the control over the flat channels offered by
the twist angle are two advantages over static channels added
directly to the potential in e.g., lab-on-a-chip devices.

The critical force required to transport the particles is always
significantly smaller in the square than in hexagonal twisted
patterns and therefore the enhanced colloidal transport is more
pronounced in twisted square patterns. The effect is specially
relevant approaching the limit of very small twist angles since the
critical force vanishes in the case of square twisted patterns.
Hence, given (i) the similarities between our colloidal system and
electronic systems and (ii) the correspondence in electronic sys-
tems between flat bands in reciprocal space and flat channels in
real space, it is plausible to think that twisted bilayers of two-
dimensional materials with square unit cells39–44 are promising
candidates for new electronic applications.

Methods
Magnetic potential. The total magnetic field at position r is H(r)=Hp,1(r)+
Hp,2(r)+Hext, with Hp,i the magnetic field of pattern i= 1, 2 and Hext the uniform
external magnetic field, which is normal to the patterns. Hence the magnetic
potential acting on a paramagnetic particle with effective volume veff is

Vmag ¼ �veff χμ0H
2ðrÞ; ð2Þ

with μ0 the vacuum permeability and χ the particle susceptibility. We scale the
particles down to effective point particles and increase their susceptibility such that

Fig. 6 Transport at magic and non-magic angles. Average distance traveled by a particle as a function of the twist angle α (scaled with the magic twist
angle αpm) at zero-temperature (a, b) and finite temperature (c, d) in either square (a, c) or hexagonal (b, d) twisted patterns. Data sets for several magic
angles are presented, as indicated. The magic angle increases in the direction of the pink arrows. The traveled distance is obtained by averaging the motion
of 100 particles located initially at the origin (axis of rotation of the patterns) and driven by a drift force (acting during 100τ) of magnitude fda/ε= 10 in the
square (a, b) and fda/ε= 80 in the hexagonal (c, d) patterns. The temperature is T= 0 in (a) and (b), kBT/ε= 0.3 in (c) and kBT/ε= 0.8 in (d). The drift
forces and temperatures used here are indicated with colored arrows in Fig. 4. The inset in (a) shows data for a drift force acting during t1= 25τ, t2= 50τ,
and t3= 75τ (at T= 0 and αsqm ¼ 3:27�).
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veffχ remains constant. If the vertical distance between the particle and the patterns
is sufficiently large (comparable or larger than the size of the unit cell of the
pattern) only the first Fourier-mode of each pattern contributes significantly to the
magnetic field21,45. Additionally, the potential is dominated by the cross-term
Vmag ≈−2veffχμ0Hext ⋅ (Hp,1+Hp,2) since Hext is uniform and much stronger than
Hp,i. In this limit, the system-specific parameters like the amplitudes of all magnetic
fields and the distance between the patterns can be absorbed into a single constant
ε. The potential is therefore given by

Vmag ¼ �χεaqp ∑
N

i¼1
cos qi � r� a1

2

� �� �
þ cos Rαqi � r

� �h i
; ð3Þ

where N= 4, 6 for the square and hexagonal patterns, respectively, Rα denotes a
rotation matrix by the twist angle α around the direction normal to the pattern, and
the vectors qi are given by

qi ¼ qp
sin 2πi=N
� �

cos 2πi=N
� �

 !
; ð4Þ

where the superscript p= {sq, hex} and qsq= 2π/a in the square pattern and qhex ¼
2π= a sinðπ=3Þ� �

in the hexagonal pattern. The first term in the right-hand side of
Eq. (3) corresponds to the pattern shifted by a1/2 and the second term to the pattern
twisted by an angle α. Shifting the patterns by a different quantity also creates, in
general, structures similar to flat channels. However, a shift by half a lattice vector
minimizes the roughness of the magnetic potential at the flat channels and specially
at the corners of the supercells by maximizing the destructive interference between
the filed of both patterns (see Supplementary Note 1). Further mathematical details
about the single hexagonal and square patterns can be found in previous works21,45.

Computer simulations. The particle trajectories are calculated with overdamped
Brownian dynamics simulations. We discretize the equation of motion, Eq. (1),
using a time step dt/τ= 10−5 and integrate it in time via the standard Euler
algorithm.

Magic angles. The magnetic potential of patterns twisted by an angle α develop
moiré interference patterns at length scales roughly given by a=ð2 sinðα=2ÞÞ. At
magic twist angles the combined magnetic potential of both patterns becomes
periodic at the length scale of the supercells. In the twisted square pattern, the
potential has a checkerboard layout of two alternating supercells, which can be
transformed into each other by a rotation of π around their centers. The unit cell of
a twisted square pattern is therefore twice the size of the supercell, see Fig. 1a. For
hexagonal patterns twisted at a magic angle, the unit cell and the supercells
coincide, see Fig. 1b. In both hexagonal and square twisted patterns there exist
other twist angles (non-magic) for which the patterns are also periodic but the
periodicity is recovered only after multiple supercells (which can not be trans-
formed into each other with similarity transformations). In those patterns, the flat
channels are not connected over macroscopic distances and hence the colloidal
transport is not enhanced as in the magic case, see Supplementary Note 1. The
mathematical condition for a magic twist angle, in which every supercell is
equivalent, can be expressed as a Diophantine problem46,47 with solution

αsqm ¼ 2 arcsin
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ kþ 1=2

q

0
B@

1
CA; ð5Þ

αhexm ¼ arccos
3ð2kþ 1Þ2 � 1

3ð2kþ 1Þ2 þ 1

� �
; ð6Þ

where k is a natural number. To obtain these expressions in the hexagonal case, we
adjusted the procedure by Shallcross et al.46 to include the constraint of having
identical supercells.

Drift force. In both hexagonal and square twisted patterns the flat channels
develop along consecutive edges of the supercells. The drift force points along the
bisector of the directions of the flat channels, as shown in Fig. 2. Hence,

fd ¼ f d
cos αpd
sin αpd

 !
; ð7Þ

where the angle αpd is given by

αsqd ðkÞ ¼ αsqm ðkÞ=2þ sgn ðαsqm ðkÞÞ
ð�1Þkþ1π

4
; ð8Þ

αhexd ðkÞ ¼ αhexm ðkÞ=2þ sgn ðαhexm ðkÞÞ ð�1Þkþ1π

6
; ð9Þ

in square and hexagonal twisted patterns, and k 2 N. The factor (−1)k+1 and the
sign of the magic angle in the above expressions reflect the fact that the edges that
support transport alternate from one magic angle to the next one as well as by
changing the sign of the twist angle. A drift force pointing along a different

direction will also induce transport provided that the force is not orthogonal to any
of the directions of the flat channels.

Critical force. To estimate the value of the critical force we assume the following
form for the mobility curves (Fig. 3a) near the transition from no-transport to
transport

μðf dÞ ¼ μ0
f d � f c

f c

� �γ

; ð10Þ

where μ0, the critical force fc and γ are used as fitting parameters.

Mobility. We define the mobility μ as the average distance traveled by the particles
divided by the amplitude of the drift force

μ ¼ rðtf Þ � rðtiÞ
		 		
 �
ðtf � tiÞf d

: ð11Þ

We calculate the average distance h rðtf Þ � rðtiÞ
		 		i by initializing 100 non-

interacting particles at the origin (axis of rotation) and let them travel under the
influence of the drift force for a total time of 100τ. To eliminate the dependence
on the initial conditions we average the distances traveled by the particles during
the second half of the simulation, i.e., ti= 50τ and tf= 100τ in Eq. (11). How-
ever, to characterize the system at non-magic angles, we consider the full tra-
jectories in Fig. 6 (such that all particles share the same initial position).
Therefore, the mobilities calculated with the distances reported in Fig. 6 differ
slightly from those shown in Fig. 4.

Data availability
All the data supporting the findings are available from the corresponding author upon
reasonable request.
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