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ABSTRACT
We study theoretically the effect of size difference and that of gravity in the phase behavior of a binary mixture of patchy particles. The species,
2A and 3B, have two A and three B patches, respectively, and only bonds between patches A and B (AB bonds) are allowed. This model
describes colloidal systems where the aggregation of particles (3B) is mediated and controlled by a second species, the linkers (2A) to which
they bind strongly. Thermodynamic calculations are performed using Wertheim’s perturbation theory with a hard sphere reference term
that accounts for the difference in the size of the two species. Percolation lines are determined employing a generalized Flory–Stockmayer
theory, and the effects of gravity are included through a local density approximation. The bulk phase diagrams are calculated, and all the
stacking sequences generated in the presence of gravity are determined and classified in a stacking diagram. The relative size of the particles
can be used to control the phase behavior of the mixture. An increase in the size of particles 3B, relative to the size of the linkers 2A, is
found to promote mixing while keeping the percolating structures and, in certain cases, leads to changes in the stacking sequence under
gravity.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0056652

I. INTRODUCTION

The ability to fabricate colloidal particles with well con-
trolled shapes, size distributions, and interparticle interactions has
improved considerably in the last few decades,1 setting the ground
for prolific research. Colloidal particles can form crystals, liquids,
and other phases of matter also seen in atomic and molecular
systems, making them ideal systems to understand the phase
behavior. On the other hand, colloidal systems are a form of matter
in their own right with structural and thermodynamic properties
not seen at the atomic scale.2 Patchy colloids (colloidal particles
with designed patches on their surfaces through which they can
form bonds and self-assemble) are a perfect example. Patchy
particles are part of a new generation of colloidal particles that are
anisotropic. The strong directional interactions between patchy

particles promote phases with peculiar macroscopic properties.
Examples include the formation of liquid states with arbitrarily
low density (empty liquids)3 and network fluids (with pinched
phase behavior4 and lower critical points5) that can be seen as
equilibrium gels. The quest for experimental realizations of equilib-
rium gels has led to the exploration of linker-particle aggregation:
The bonding of particles is mediated by another component, a
bifunctional linker. The particles can be, e.g., patchy colloids,6,7

patchy nanoparticles,8,9 and biomolecules10,11 functionalized such
that they can bond strongly to a limited number of linkers. In the
experimental systems,6,7,9,11 the size of the linkers is smaller than
that of the components to which they bond. The properties of the
linkers (e.g., their size, shape, chemistry, and concentration) control
the aggregation process and the thermodynamic properties of the
system, while the properties of the particles remain the same.12
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The linker-particle interactions are often engineered using bio-
logical macromolecules, such as complementary DNA strands7,10

or streptavidin and biotin,6,11 originating extremely strong
bonds.

Here, we study both the bulk phase behavior and the
sedimentation–diffusion-equilibrium of a colloidal linker-particle
system. We model the system as a binary mixture of patchy particles.
The model captures the essence of the linker-particle interaction:
strong directionality and strength, limited valence, and species of
different sizes. The phase behavior of binary mixtures of patchy par-
ticles with the same size has been investigated13,14 for models where
bonds can form between patches of particles of the same or differ-
ent species. The effect on the bulk phase diagram of the number of
patches13 and that of the relative strength of the different bonds14

was obtained using a combination of Wertheim’s first order per-
turbation theory and a generalized Flory–Stockmayer approach to
percolation. Here, we generalize this theoretical framework to the
case of species with different sizes and apply it to a model in which
only interspecies bonds can form.

In colloidal experiments, gravitational effects are often
unavoidable.15 These effects are particularly strong in
sedimentation–diffusion-equilibrium experiments of colloidal
mixtures.16,17 It is frequent to observe a stacking sequence of
several layers of distinct bulk phases at different heights in a
cuvette18–20 as a result of a complex interplay of bulk behavior,
sedimentation, and diffusion. However, disentangling the effects of
interparticle interactions, which generate the bulk phase diagram,
from those of gravity is a complex task.17 We use a theory of
sedimentation for colloidal mixtures17,21 to obtain all possible
stacking sequences of the patchy particle model in the limit of
samples of infinite height. The theory relates the bulk phase diagram
of the mixture to its phase stacking sequences under gravity
through a local density approximation (LDA). The theory has been
applied to several colloidal mixtures,21–23 including patchy particle
systems24,25 in which a rich phase stacking phenomenology was
found.

This paper is organized as follows: In Sec. II, the patchy particle
model of linker-particle aggregation is introduced, Wertheim’s per-
turbation theory for binary mixtures of spheres with different sizes
is presented, and the sedimentation theory that incorporates the
effect of gravity is summarized. In Sec. III, the results are described
in detail: phase diagrams (including percolating lines) for mixtures
with equal and different particle sizes as well as all the possible
stacking sequences that can be obtained under gravity. Finally, in
Sec. IV, the results are summarized and several conclusions are
drawn.

II. MODEL AND THEORY
The system under study is a binary mixture of patchy colloids.

The particles are hard spheres (impenetrable spheres that cannot
overlap in space) with diameter σi. The species is defined by the size
of the particle and the number of patches n(i)α of type α on its sur-
face, (α, i) = {(A, 1), (B, 2)}. The pair potential between particles of
species i (with n(i)α patches of type α on its surface) and particles
of species j (with n(j)β patches of type β on its surface) is given by
a repulsive hard sphere potential ϕHS plus an attractive interaction

between patches on the two particles,

ϕ(r⃗ij) = ϕHS(rij) − ϵij

n(i)
α

∑
ki=1

n(j)
β

∑
kj=1

Ψ(r⃗ij, r̂ki , r̂kj). (1)

Here, r⃗ij is the vector joining the center of the two particles, rij is the
distance between the particles, and the sum runs over all the pairs of
patches on the two particles. The interaction between patches ki on
particle i and kj on particle j is a square well potential of energy ϵij.
The function Ψ defines the range and shape of this potential and,
in general, depends on r⃗ij and the position of the patches on the
surface of the particles (represented by r̂ki and r̂kj ). As explained
in more detail in Ref. 26, there are several possible choices for Ψ
(like the one introduced by Bol27 and known as the Kern–Frenkel
potential28 or the one used in Ref. 29). The results of the present
work, given the level of approximation employed in the theory, are
compatible with various choices of Ψ, provided that they define
a range small enough to ensure the single bond per patch condi-
tion. The choice of simple discontinuous pair potentials like that
of Eq. (1) facilitates the definition of a bond: A bond forms when
two patches are closer than the range of the patch attraction, and
the energy of the bond is equal to the depth of the square well
potential.

The systems that motivated this work6,7,9–11 are binary mixtures
engineered in such a way that (i) one of the species (the linker) is
bifunctional and therefore may connect to one or two particles of
the other species (the monomers), (ii) each monomer can bond to
a restricted number of linkers, and (iii) the only bonds that form
are those between different species. Therefore, we consider that (i)
particles of species 1 have nA = 2 patches of type A and diameter
σ1 and model the linkers (2A), (ii) particles of species 2 have nB > 2
patches of type B (for simplicity, we choose nB = 3) and diameter σ2
and model the monomers (3B)—see Fig. 1, and (iii) only interspecies
bonding is allowed [i.e., ϵij = ϵ(1 − δij) in Eq. (1)], and therefore,
the model has only one type of bond (AB, i.e., between patches of
type A and patches of type B) and a single energy scale, ϵ. In what
follows, we denote the composition of the mixture x by the molar
fraction of species 2A: x1 = x. Hence, the molar fraction of species
3B is x2 = 1 − x.

FIG. 1. Particle model. Particles of species 1 have diameter σ1 and 2 patches of
type A. Particles of species 2 have diameter σ2 and 3 patches of type B. This
mixture is referred to as a 2A–3B mixture.
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A. Helmholtz free energy: Wertheim’s
thermodynamic perturbation theory

Within Wertheim’s first order perturbation theory,30 the
Helmholtz free energy per particle, f H , is written as a sum of contri-
butions, the unperturbed reference system, containing the excluded
volume interactions of the cores and the ideal free energy, f HS,
and a perturbation due to the attractive bonding interactions of the
patches, f b,

f H = f HS + f b. (2)

The unperturbed term f HS is the sum of the ideal gas term that
accounts for the kinetic energy (thermal energy) and the excess term
that accounts for the excluded volume interactions, f HS = f id + f ex.
For a binary mixture, f id is given exactly by

β f id = ln ρ − 1 + ∑
i=1,2

xi ln(xiλ3
i ), (3)

with β = 1/kBT being the inverse thermal energy (kB is the Boltz-
mann constant and T is the temperature), ρ = N/V being the total
number density (N is the total number of particles and V is the total
volume of the system), xi = N i/N being the molar fraction of species
i (N i is the number of particles of species i), and λ3

i being the thermal
volume of species i. For the excess part, we use the equation of state
proposed by Santos et al.,31 which is based on the Carnahan–Starling
equation of state for hard sphere mixtures,32

β f ex = ln(1 − η)(−1 + C2 − 2C3)

+
η

1 − η
(3C1 +

C2

1 − η
+ C3(η − 2)), (4)

where η = π
6 ρ⟨σ3

⟩ is the packing fraction of the mixture, ⟨σn
⟩

= ∑ixiσn
i denotes the moments of the diameter distribution, and Ci

are constants given by

C1 =
⟨σ⟩⟨σ2

⟩

⟨σ3⟩
,

C2 =
⟨σ2
⟩

3

⟨σ3⟩2
,

C3 =
⟨σ2
⟩

⟨σ3⟩2
(⟨σ⟩⟨σ3

⟩ − ⟨σ2
⟩

2
).

(5)

The bonding free energy is approximated by Wertheim’s first
order perturbation theory33 and comprises two contributions, the
bonding energy and an entropic term related to the number of ways
of bonding two particles. Denoting by XA (XB) the probability that a
site of type A (B) on a particle of species 2A (3B) is not bonded, the
bonding free energy becomes

β f b = xnA[ln(XA) −
XA

2
+

1
2
] + (1 − x)nB[ln(XB) −

XB

2
+

1
2
].

(6)
The probabilities (XA, XB) are related to the total density, molar frac-
tions, and temperature through the laws of mass action (obtained by

treating bond formation as a chemical reaction). These laws form a
system of two coupled equations for the fraction of unbonded sites
A and B,

1 − XA = ρnB(1 − x)XBXAΔ,
1 − XB = ρnAxXAXBΔ,

(7)

which can be solved analytically. Here, Δ characterizes the bond
between particles of different species. It depends on how the patches
are modeled. For patches interacting via a square well with depth ϵ
[see Eq. (1)], it is given by

Δ = ∫
vb

g(12)
HS (r)[exp(βϵ) − 1]dr, (8)

where g(12)
HS (r) is the radial distribution function of the reference

hard sphere fluid for two particles of different species and the
integral is calculated over the bonding volume, vb, which is con-
stant (all bonds have the same volume). The value of vb is set
to vb = 0.000 332 285σ3

A as in previous works.13,14 The radial dis-
tribution function g(12)

HS (r) is approximated by its contact value
Ao(η), as obtained from the work of Santos31 (also based in the
Carnahan–Starling contact value32),

Ao(η) =
1

1 − η
+

3
2

η(1 − η/3)
(1 − η, )2 Z +

η2
(1 − η/2)
(1 − η)3 Z2, (9)

where Z = 2<σ2
>

<σ3>
( 1

σ1
+ 1

σ2
)
−1. Using g(12)

HS (r) = Ao(η), Eq. (8)
becomes

Δ = vb[exp(βϵ) − 1]Ao(η). (10)

These approximations are in line with the independent site
approximation underlying Wertheim’s first order perturbation the-
ory and affect the results quantitatively but are not expected to
introduce qualitative changes. A detailed description of Wertheim’s
theory can be found, e.g., in Refs. 30 and 34. Note that vb contains
all the dependence of the theory on the specificities (range and form)
of the patch–patch square well attraction. Therefore, the theory will
give the same results for different choices of Ψ in Eq. (1), as long as
the parameters correspond to the same bonding volume.

The theories adopted to construct the free energy of the mix-
ture have been independently validated by numerical simulations.
Agreement between theory and simulations has been found in Ref.
31 for the compressibility factor and for the contact value of g(r) in
binary mixtures of hard spheres of different sizes at several composi-
tions. Likewise, in Ref. 35, the phase behavior of a binary mixture of
patchy particles of equal sizes obtained from the theory was shown
to be in line with the results of Monte Carlo simulations.

The equilibrium properties of the mixture are determined by
minimizing (at a fixed composition x, osmotic pressure p, and
temperature T) the Gibbs free energy per particle,

g =
p
ρ
+ f H , (11)

with respect to the total density ρ, subject to the constraints imposed
by the law of mass action, Eq. (7). A standard Newton–Raphson
method is used to minimize g(x), and the law of mass action is
solved analytically. Binodal lines (along which two phases coexist)
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are located by a standard common-tangent construction on g(x),
which is equivalent to solving the equations for the equality of
the chemical potentials of both species in the coexisting phases.36

Mechanical and thermal equilibria are satisfied by fixing both the
pressure and the temperature. Critical points are computed by deter-
mining the states which satisfy the law of mass action [Eq. (7)] and
the spinodal condition,

f vv f xx − ( f xv)
2
= 0, (12)

where subscripts denote the partial derivatives, i.e., f xv is the sec-
ond partial derivative of f H with respect to the volume per particle
v = 1/ρ and the composition x at constant temperature. In addition,
stability requires the vanishing of the third order derivative in the
direction of maximal growth,37

f xxx − 3 f xxv(
f xv

f vv
) + 3 f xvv(

f xv

f vv
)

2

− f vvv(
f xv

f vv
)

3

= 0. (13)

B. Flory–Stockmayer random-bond percolation theory
for patchy particles

To study percolation, we use the generalization of the
Flory–Stockmayer38,39 random-bond percolation model of Tavares
et al.40 Consistent with the assumptions made in Wertheim’s the-
ory, closed loops are neglected and the clusters assume a tree-like
bonding structure, as illustrated in Fig. 2. Hence, the connections
of a cluster can be separated by levels: A random particle is chosen
as the level 0; the particles directly connected to this are at level 1,
and so-forth. Therefore, the number of bonded sites of type γ on
particles of species k at the level i, b(k)i,γ , is related to the number of
all types of bonded sites of both species of particles in the previous
level, b(j)i−1,α, through a recursion relation. As explained in detail in
Ref. 14, in order to establish if the system has percolated, we express
this relation in the matrix form

b̃i = T̃ib̃0, (14)

FIG. 2. Schematic representation of a tree-like cluster in a binary mixture. After
choosing a random particle (top of the figure), the cluster can be represented by
levels as shown. At each level, there are bi bonded sites. A bond between two
bonding sites lowers the energy by ϵ. Only bonds of type AB can be formed.

where b̃i is a vector with components b(k)i,γ and T̃ is a square matrix
(the transition matrix) that encodes the connectivity of the cluster.
In the mixture under study, the elements of T̃ are given by

⎛
⎜
⎝

0 (1 − XB)(nB − 1)

(1 − XA)(nA − 1) 0

⎞
⎟
⎠

. (15)

The matrix T̃ may be diagonalized or transformed into the Jor-
dan form. In either case, the progressions converge to zero if the
largest (absolute value) eigenvalue λ of T̃ is smaller than one, i.e.,
∣λ∣ < 1, since then the number of bonds decreases with increasing
level. The percolation threshold is then reduced to determining the
states for which the largest absolute value of the eigenvalues of T̃ is
equal to one. That is, the system percolates if the number of bonds
increases with increasing level. The eigenvalues of T̃ are

λ± = ±
√
(1 − XB)(nB − 1)(1 − XA)(nA − 1). (16)

The percolation threshold is obtained when the eigenvalue λ+
equals 1. For more details, see Ref. 40.

The average size of the clusters, ⟨M⟩, which will give insight
into the structure of the fluid, is

⟨M⟩ =
N
Ncl

, (17)

where N is the total number of particles and Ncl is the number of
clusters. Under the no-loop assumption, the number of clusters is
Ncl = N −Nbonds, where Nbonds is the number of bonds. Hence, every
bond reduces the number of clusters by one. One can rewrite Eq. (17)
as ⟨M⟩ = (1 −Nbonds/N)−1. In this way, the number of bonds per
particle may be calculated considering the bonding probabilities,

Nbonds

N
=

nAx(1 − XA) + nB(1 − x)(1 − XB)

2
. (18)

Plugging Eq. (18) into Eq. (17) gives the expression for the average
size of the clusters.

C. Sedimentation–diffusion-equilibrium
To study the effect of gravity on the phase behavior of the

mixture, we use the theory of sedimentation for colloidal mixtures
developed by de las Heras and Schmidt.17 Here, we discuss briefly
the main ideas and refer the reader to Refs. 17 and 21 for a detailed
description. Gravity is incorporated into the bulk description of
the system via a height-dependent local chemical potential for each
species defined as

μi(z) = μb
i −migz, i = 1, 2, (19)

where μb
i is the bulk chemical potential of species i (in the absence

of gravity), mi is the buoyant mass of species i, g is the acceleration
due to gravity, and z is the vertical coordinate. The state of the sam-
ple at position z is therefore approximated by that of an equilibrium
system with chemical potentials given by Eq. (19). This local den-
sity approximation (LDA) is justified if the correlation lengths in the
system are small compared to the gravitational lengths ξi = kBT/mi g.
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The gravitational length of micrometer-sized colloidal particles typ-
ically varies from millimeters to centimeters. Therefore, the LDA is
in general a very good approximation.

Eliminating the spatial dependency of the local chemical poten-
tials in Eq. (19) yields

μ2(μ1) = a + sμ1, (20)

where a = μb
2 − sμb

1 and s = m2/m1 is the ratio of the buoyant
masses. Equation (20) describes a segment of a line in the plane
of local chemical potentials, known as the sedimentation path.
The representation of the bulk phase diagram in the plane of
chemical potentials (at constant temperature) is therefore par-
ticularly suited to study sedimentation since the sedimentation
paths are simply given by straight lines. In other representa-
tions, such as the pressure–composition plane, the sedimentation
paths are complex curves,22 the shape of which depends on the
interparticle interactions. The sedimentation path represents how
the local chemical potentials vary along the sedimented colloidal
mixture. Hence, a sedimentation path that crosses, e.g., a bin-
odal line indicates the presence of an interface in the sedimented
sample (see Fig. 3 for an illustration). The sedimentation path
is therefore directly related to the observed stacking sequence,
i.e., the sequence of different thermodynamic phases observed in
sedimentation–diffusion-equilibrium.

We restrict the discussion to samples with very large (infinite)
height. This limit is justified in typical sedimentation experiments of
micrometer-sized colloidal mixtures since the length of the sedimen-
tation path is typically of several kBT, covering a large region of the
bulk phase diagram of the mixture. The limit of infinite height sam-
ple is very convenient since the sedimentation path is fully defined
by its slope s, the intercept a, and its direction, which is given by the
sign of the buoyant masses. For positive (negative) buoyant mass mi,

FIG. 3. Schematic bulk phase diagram of a colloidal binary mixture in the plane
of chemical potentials μ1 − μ2 at fixed temperature. The black solid line repre-
sents a binodal at which phases L and V coexist. The binodal ends at two critical
points (empty circles). A percolation line (orange solid line) hits the binodal near a
critical point. The red solid line represents the sedimentation path of a mixture in
a sample of height h under gravity. The arrow indicates the direction of the path
from the bottom to the top of the sample. The corresponding stacking sequence
is bottom L and top V , as shown in the sketch. The red dashed lines are selected
sedimentation paths for the limit of an infinite height sample: (1) a path tangent
to the binodal, (2) a path that crosses an end point of a binodal, and (3) a path
parallel to the asymptotic percolation line in the limit of infinite chemical potentials.

the local chemical potential μi(z) decreases (increases) from the bot-
tom to the top of the sample. Finite sedimentation paths25 can also
be considered, e.g., to study the effect of sample height and to make
a direct comparison with experiments.

Both the intercept a and the slope s of the path are related to
physical parameters of the system. The buoyant mass of species i is
mi = (ρm,i − ρs)vi, where ρs is the solvent density, ρm,i is the mass
density of species i, and vi is the volume of a particle of species i.
Hence, for a binary mixture in which both species are of the same
material, the slope s is simply given by

s =
m2

m1
=
v2

v1
=

σ3
B

σ3
A
= σ∗3. (21)

The intercept a fixes the location of the path in the plane of chem-
ical potentials, and it is given by the slope s and the bulk chemical
potentials of the sample in the absence of gravity. Hence, the com-
position and the concentration of the mixture affect the location of
the path.

By changing the parameters a and s, different stacking
sequences can appear. The sequences can be classified in a stacking
diagram in the plane of slope s and intercept a of the sedimenta-
tion path.17,21 In this plane, each point represents a sedimentation
path and therefore a stacking sequence. The boundaries between
different stacking sequences in the stacking diagram are formed by
special sedimentation paths for which an infinitesimal change in
either s or a might lead to a change in the stacking sequence. In the
limit of an infinite height sample, there are three different types of
boundaries in the stacking diagram. In Fig. 3, we show schemati-
cally a bulk phase diagram, a finite sedimentation path (finite sam-
ple height), and three examples of sedimentation paths that define
boundaries between distinct stacking sequences in the stacking dia-
gram. The three types of boundaries in the stacking diagram are as
follows.

1. Sedimentation binodals
Formed by the set of all sedimentation paths that in bulk are

tangent to a phase boundary [e.g., the path (1) in Fig. 3], such as
binodal lines and percolation lines.

2. Terminal lines
Given by the set of sedimentation paths that cross an end point

of a phase boundary [e.g., the path (2) in Fig. 3], such as a critical
point or a percolation end point.

3. Asymptotic terminal lines
A bulk binodal or a percolation line in the plane of chemical

potentials does not end at finite chemical potentials if it is either con-
nected to a transition of one of the monocomponent systems or it
represents a phase boundary that continues in the limit of infinite
chemical potentials. In both cases, the set of sedimentation paths
that are parallel to the asymptotic behavior of the phase boundary
[e.g., line (3) of Fig. 3] correspond also to a boundary in the stacking
diagram between different stacking sequences.

For samples of finite height, the sedimentation paths are not
only determined by their slope and intercept, and hence, the stacking
diagrams admit several representations.25 Depending on the sam-
ple height, the possible stacking sequences are those given by the
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stacking sequences of the infinite height limit plus their subse-
quences formed by removing stacks from either the top or the
bottom of the sample.

III. RESULTS
We begin by describing the phase behavior of mixtures with

equal size particles in Sec. III A. In Sec. III B, we discuss the
phase behavior of mixtures with particles of different sizes. Next,
we focus on the effect of gravity in mixtures of particles with the
same size in Sec. III C and with different sizes in Sec. III D. The
phase diagrams are shown in reduced temperature, T∗ = kBT/ϵ, and
reduced osmotic pressure representations, P∗ = pvA/ϵ, where vA is
the volume of particle 2A.

A. Phase behavior: Equal size particles
The bulk phase diagram for the mixture with equisized par-

ticles (σA = σB) in the composition–temperature plane for a fixed
osmotic pressure P∗ = 7 ⋅ 10−5 is shown in Fig. 4. Two fluid phases
are stable: a low-density vapor phase, V , and a high-density liq-
uid phase, L. It is informative to divide the vapor phase in V1 and
V2: the vapor phases rich in species 1 (2A) and 2 (3B), respec-
tively. By doing so, the percolation lines are easily distinguishable
and the abundance of each species relative to the other is specified.
There are two coexistence regions, each one ending at a lower crit-
ical point. The maximum number of bonds is determined by the
composition of both species. Particles 3B allow up to three bonds,
but since we are considering interspecies bonds only, we need more
2A than 3B particles to allow a fully connected system. This is why
the denser phase occurs at values around x = 0.6, where most bonds
are realizable. The low temperature vapor phases occur when the
mixture is made mostly of one of the species. The asymmetry in
the coexistence regions is due to the different functionality of the
particles.

FIG. 4. Bulk phase diagram of the mixture with equal size particles in
the composition–temperature plane for the reduced pressure P∗ = pvA/ϵ
= 7 ⋅ 10−5. The violet solid line is the binodal, which encloses the coexistence
region. The brown circle denotes the critical point of the phase rich in 2A, and the
blue circle denotes the critical point of the phase rich in 3B. The square is the
azeotropic point. The orange dashed lines are the percolation lines that cross the
coexistence regions at the points indicated by green triangles. V1(V2) stands for
the vapor phase rich in 2A(3B), and L stands for the liquid phase.

It is not possible to classify this mixture following the work of
van Konynenburg et al.,41 as none of the two pure fluids undergoes
liquid–vapor (LV) condensation, i.e., the coexistence regions do not
extend up to the pure fluid compositions at x = 0 and x = 1. A neg-
ative azeotropic point is present at x ≈ 0.58. The percolation lines
indicate the percolation threshold. In the region between the lines,
the system percolates. The liquid phase is always percolated (i.e.,
the liquid phase forms always a network fluid). Inside the coexis-
tence regions and close to the critical points, the system phase sep-
arates into a percolated vapor phase and a percolated liquid phase.
The percolation lines cross the coexistence region at the percolation
end points. These points are important when the effect of grav-
ity is considered. Moving upward from these points and inside the
coexistence region, the system divides into a percolated liquid and
non-percolated vapor. As the temperature is increased, the two per-
colation lines get closer and finally meet in the azeotropic point. In
the low temperature limit, using the laws of mass action [Eq. (7)]
and the percolation condition [Eq. (16)], the percolation lines tend
to (with nA = 2) the following:

(a) if XA → 0, x → nB
3nB−2 ; for the system under study, nB = 3, and

so x → 3/7.
(b) if XB → 0, x → nB(nB−1)

2+nB(nB−1) ; for the system under study, nB = 3,
and so x → 3/4.

Note that for nB ≥ 3, there will always be a region between
x = 1/3 and x = 1 where the system is percolated at sufficiently low
temperatures.

The typical values of the packing fractions at coexistence
can be inferred from the phase diagram representation of Fig. 5,
where the binodal is plotted in the plane of packing fractions
η1 and η2 of the two species at fixed temperature T∗ = 0.065.
(The pressure–composition representation of the bulk diagram at
the same temperature is shown in Fig. 10 to discuss the effects
of gravity.) In Fig. 5, each point represents a thermodynamic

FIG. 5. Projection of the phase diagram at constant temperature (T∗ = 0.065) in
the packing fraction representation. The violet solid line is the binodal line, the
orange dashed lines the percolation lines that cross the coexistence regions at the
points indicated by green triangles. The brown circle denotes the critical point of
the phase rich in 2A, and the blue circle denotes the critical point of the phase rich
in 3B. The thin red line is the tie line for the azeotropic point (P∗ = 2.851 ⋅ 10−5).
The thin green lines are the tie lines for the pressure of P∗ = 1 ⋅ 10−4.
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state with (total) packing fraction η = η1 + η2 and composition
x = η1/(η1 + η2). There is no phase separation if η is larger than
∼ 0.07 (irrespective of composition). At lower densities, coexistence
occurs at intermediate values of x. The three thin lines inside the two
phase region are illustrative tie lines that connect coexisting points.
At the azeotropic point, there is a single tie line (thin red line). In
a range of pressures higher than that of the azeotropic point, there
are two phase transitions (see, e.g., the two green tie lines obtained
at P∗ = 1 ⋅ 10−4). The density of the coexisting liquid at each of the
transitions differs significantly, and it is determined by the overall
composition. For 2A rich systems (i.e., x > 1/2 or η1 > η2), the coex-
isting liquid phase has a density that is significantly larger than the
density of the coexisting liquid obtained at the same pressure for 3B
rich systems. Note that one expects to obtain a qualitatively similar
η1 − η2 phase diagram for all the other temperatures where coexis-
tence takes place and percolation is possible. Given that the tie lines
represented in Fig. 5 correspond to reduced pressures of the same
order of magnitude (10−5, 10−4) of the binodals of Figs. 4, 6, and
8, it is expected that the packing fractions at which phase separa-
tion occurs will also have the same order of magnitude (i.e., η1 and
η2 ≃ 10−2, 10−1).

We show the bulk phase diagrams in the
composition–temperature plane for different values of the
osmotic pressure in Fig. 6. The two phase regions shrink when the
pressure is increased. Hence, higher pressure increases the tendency
to mix. Increasing the pressure leads to a density increase [see
Eq. (11)], which explains why the system is more prone to mix (if
only homogeneous phases are considered). For pressures higher
than P∗ = 1.94 ⋅ 10−4, the 3B rich coexistence region disappears
and there is only a closed miscibility gap with upper and lower
critical points inside the percolated region. For pressures above
P∗ = 3.9 ⋅ 10−4, the LV condensation disappears and the system is
completely miscible. The percolation line for the closed miscibility
gap topology (P∗ = 3.8 ⋅ 10−4) is shown. The phase coexistence
is completely inside the percolation line. Furthermore, as the

FIG. 6. Bulk phase diagrams in the composition–temperature plane for the reduced
pressure P∗ = 2 ⋅ 10−5 (orange line), P∗ = 10−4 (yellow line), P∗ = 1.9 ⋅ 10−4

(green line), and P∗ = 3.8 ⋅ 10−4 (blue line). The topology of the phase diagram
changes for this last value. The blue circles are the critical points, and the red
squares are the azeotropic points. The percolation lines are represented in yellow
dashed lines, and they end in the green triangles (at the coexistence region).

percolation end points indicate, at lower temperatures, the
percolation lines do not change.

In Fig. 7, we represent the critical properties of the mixture.
In Fig. 7(a), the critical lines in the critical temperature vs critical
packing fraction representation are shown. There is no empty liq-
uid regime3 since the critical densities do not tend to zero (if this
were the case, it would be possible to have liquid phases at arbi-
trarily low densities). Nevertheless, the critical lines tend asymp-
totically to η−C ≈ 0.0189 in the phase rich in 3B and to η+C ≈ 0.0246
in the phase rich in 2A, which are very low for liquid phases. In
Fig. 7(b), critical pressure–critical temperature projections are rep-
resented. The critical line forms a closed loop starting and ending at
P → 0 and T → 0. In Fig. 7(c), we show the critical bonding proba-
bilities, (1 − XA) and (1 − XB). In the 2A rich phase, all 3B patches
are bonded, (1 − XB)→ 1, and the opposite happens for the 3B rich
phase, i.e., (1 − XA)→ 1. In Fig. 7(d), the critical average size of the
clusters ⟨M⟩ is plotted [see Eq. (17)]. As T → 0, the average size of
the clusters in the 2A rich phase tends to ⟨M⟩+ → 10.9 and in the
3B rich phase to ⟨M⟩− → 23.7. The phase rich in 3B has a larger
average cluster size because these particles allow more bonds. As the
critical temperature increases, ⟨M⟩+ and ⟨M⟩− approach the same
value.

B. Phase behavior: Different size particles
Next, we study the effect of changing the relative size of the par-

ticles σ∗ = σB/σA. Since in the experimental systems6,7,9,11 the linkers
are always smaller than the monomers, we restrict our analysis to
the case σ∗ ≥ 1. An increase in σ∗ corresponds to increasing the size

FIG. 7. Critical properties of the mixture with equal size particles. The critical lines
corresponding to the phase rich in 2A are depicted in brown and in blue for the
phase rich in 3B. (a) Critical temperature vs critical packing fraction. (b) Criti-
cal temperature vs critical pressure. (c) Critical temperature vs critical bonding
probabilities. (d) Critical temperature vs critical average size of the clusters.
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of the 3B particles, with the size of the 2A particles fixed. We plot
in Fig. 8 the phase diagrams for mixtures with particles of different
sizes at a fixed pressure of P∗ = 7 ⋅ 10−4.

The phase diagrams have the same topologies as for mixtures
with equal size particles: as σ∗ increases, the coexistence regions get
smaller, similar to the effect of increasing the pressure for the case
of mixtures with equal size particles. Above σ∗ = 1.63, the 3B rich
phase disappears and the topology of the phase diagram changes to
a single closed miscibility gap. Above σ∗ = 1.95, the gap disappears
and the system becomes completely miscible at all temperatures. By
increasing the size of the 3B particles, we increase the interspecies
excluded volume and the particles have less volume to explore, mak-
ing it harder to bond and causing the miscibility gaps to shrink. The
calculation of the binodal near the critical region is incomplete. This
is due to numerical problems caused by the difficulty in minimizing
the functional g(x), Eq. (11), near the critical region. Nevertheless,
we do not expect this region to change considerably. The percolation
lines show that the liquid phase is always percolated. The position of
the percolation lines changes only slightly by changing the size. This
is because the size dependence in the eigenvalues is in the probabil-
ities (1 − Xi), and as it is shown below [see Fig. 9(c)], the effect of
changing the size makes (1 − XA) increase and (1 − XB) decrease,
which compensate almost exactly, causing the value of λ+, Eq. (16),
to change very little. The asymptotic behavior of the percolation
lines at low temperature does not change by changing σ∗ (similar
to what happened by increasing the pressure): It tends to x → 3/7
in the phase rich in 3B and to x → 3/4 in the phase rich in 2A.
Inside the coexistence regions, the percolation lines continue and
meet in the azeotropic point. For the closed miscibility gap, in con-
trast to the previous case, the gap is not completely inside the per-
colated region. Instead, the percolation line crosses the coexistence
region.

The critical properties of the mixtures are shown in Fig. 9. As
we increase the size of the 3B particles, the critical packing fractions
of the mixture tend to higher values [see Fig. 9(a)], which is not

FIG. 8. Phase diagrams in the temperature–composition plane for P∗ = 7 ⋅ 10−5

and different size mixtures. The values of σ∗ = σB/σA are σ∗ = 1 (orange line),
σ∗ = 1.3 (yellow line), σ∗ = 1.6 (green line), and σ∗ = 1.89 (blue line). The per-
colation lines are plotted as dashed lines. The triangles indicate the points where
the percolation line hits the binodal, the circles indicate the critical points, and the
squares indicate the azeotropic point. The open binodals are due to numerical
problems (see the text).

FIG. 9. Critical properties for mixtures of different size particles. The color scheme
is the following: σ∗ = σB/σA = 1 (orange line), σ∗ = 1.3 (yellow line), σ∗ = 1.6
(green line), and σ∗ = 1.89 (blue line). The arrows represent the direction of
increasing σ∗. (a) Critical temperature vs critical packing fraction. (b) Criti-
cal temperature vs critical pressure. (c) Critical temperature vs critical bonding
probabilities. (d) Critical temperature vs critical average size of the clusters.

surprising since the system is denser. For the pressure–temperature
projections in Fig. 9(b), the closed loops get smaller with increas-
ing size, which is an indication that the coexistence regions shrink.
There is also a shift of the closed loops to lower critical temperatures
and pressures as the size of the 3B particles increases. In Fig. 9(c),
the critical bonding probabilities are represented by (1 − XA) and
(1 − XB). As σ∗ increases, it becomes harder to find a bonded 3B
patch in the rich 3B phase (2A patches are completely bonded) and
it becomes easier to find a bonded 2A patch in the rich 2A phase (3B
patches are completely bonded). This describes the effect of chang-
ing the size of the particles. The behavior of the average cluster size
is the most interesting, Fig. 9(d). The clusters in the 3B rich phase
tend to smaller values as σ∗ is increased (the probability of bond-
ing 3B particles decreases). In the 2A rich phase, the average size
of the clusters increases (the probability of bonding 2A particles
increases). For size ratios larger than σ∗ ≈ 1.5, the clusters in the 2A
rich phase become larger than those in the 3B rich phase. In recent
works,42,43 linker-particle binary mixtures (with nB = 6) where the
linker is a polymer have been studied using theories similar to those
considered here. In particular, the effects of polymer stiffness42 and
length43 have been investigated and represented (Fig. 2 of Ref. 42 and
Fig. 3 of Ref. 43) in an (inverse) temperature vs η2 phase diagram at
fixed composition (x = 0.6, in our notation). It is reported that coex-
istence is obtained below a certain temperature (kBT/ϵ ≈ 0.06–0.07),
which barely changes with stiffness42 or length.43 Figure 8 shows
that a similar behavior is expected from our theory: At a fixed
intermediate composition close to that of the azeotropic point
(x ≈ 0.6), one would always obtain critical temperatures close to
kBTc/ϵ ≈ 0.06–0.07, irrespective of the size ratio σ∗.
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C. Sedimentation: Equal size particles
We proceed to study sedimentation–diffusion-equilibrium in

the infinite height sample approximation. As in standard exper-
imental conditions, we work at constant temperature. Figure 10
shows the bulk phase diagram of a mixture of equal size parti-
cles in the pressure–composition and also in the plane of chemical
potentials. The pressure–composition diagrams are obtained in a
similar way as the temperature–composition diagrams, but keep-
ing the temperature constant instead of the pressure. The chemi-
cal potentials are calculated considering that the Gibbs free energy
per particle is simply g = xμ1 + (1 − x)μ2. Hence, μ1 and μ2 can be
obtained from the value of the tangent to g(x) at x = 1 and x = 0,
respectively.

The diagrams shown in Fig. 10 are representative of the system
under study as they show the two topologies already discussed. In
Figs. 10(a) and 10(b), a closed miscibility gap with upper and lower
critical points is illustrated. For the values of the pressure plotted,
the system is always percolated. At temperatures below T∗ = 0.071,
a second coexistence region appears, Figs. 10(c) and 10(d). The bulk
phase diagram exhibits a positive azeotropic point and two upper
critical points. We also represent the percolation lines. The system
percolates in the region enclosed by the percolation lines. At higher
temperatures, the phase separation region shrinks and eventually
disappears, similarly to the effect of increasing the pressure (Fig. 6).
In addition, since the percolation lines intercept the binodal from the
vapor phase [see Fig. 10(d)], it is possible to find a low density vapor

FIG. 10. Pressure–composition bulk diagrams at constant temperature [(a) and
(c)] and corresponding diagrams in the plane of chemical potentials [(b) and (d)].
The temperature is set to [(a) and (b)] T∗ = 0.0718 and [(c) and (d)] T∗ = 0.065.
The violet lines indicate the binodals, and the yellow dashed lines indicate the
percolation lines {not shown in [(a) and (b)] as the system is always percolated} that
intercept the binodal at the points marked by triangles. The blue circles indicate the
critical points of the 3B rich phase, and the brown circles indicate the critical points
of the 2A rich phase. The azeotropic point is marked by the red square. The green
line in (b) is an example of a sedimentation path corresponding to the stacking
sequence LV from bottom to top (see Fig. 11 for the point corresponding to this
sedimentation path).

FIG. 11. Stacking diagram of a mixture of equal size particles at temperature
T∗ = 0.0718. The violet line is the sedimentation binodal. The blue and brown
lines are the terminal lines of paths that cross bulk critical points. Each region
defines a different stacking sequence, as indicated. The path corresponding to the
green cross is represented in the bulk phase diagram, Fig. 10(b).

phase that is percolated. We define therefore V′1 and V′2 as the vapor
percolated phases. This helps us to interpret the stacking sequences
in the stacking diagram.

The stacking diagram in the presence of gravity is calculated
using the phase diagrams in the plane of chemical potentials, as
described in Sec. II C. In Fig. 11, we plot the stacking diagram
for the case of the closed miscibility gap shown in Figs. 10(a) and
10(b), i.e., T∗ = 0.0718. The stacking diagram consists of a sedimen-
tation binodal (formed by the paths tangent to the bulk binodal)
and two terminal lines (formed by the paths that cross the crit-
ical points). These lines divide the stacking diagram in different

FIG. 12. Stacking diagram of a mixture of equal size particles at temperature
T∗ = 0.065. The violet line is the sedimentation binodal of the bulk binodal. The
yellow lines correspond to the sedimentation binodals of the percolation lines. The
blue and green lines are the terminal lines corresponding to the critical points and
the percolation end points, respectively. The red vertical lines are the asymptotic
terminal lines of the percolation lines.
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regions that correspond to different stacking sequences. The stack-
ing sequence of each region is found by selecting a point inside
the region, plotting the corresponding sedimentation path in the
bulk phase diagram, and then reading the sequence by looking at
the bulk regions covered by the path. As an example, we highlight
with a cross a point in the stacking diagram of Fig. 11 and show
its corresponding sedimentation path in the bulk phase diagram of
Fig. 10(b). The stacking sequences are named from the bottom to
the top of the sample. Hence, the stacking sequence LV forms a
liquid phase at the bottom of the sample and a vapor phase at the
top (the opposite occurs for the stacking sequence VL). Although
there are only two stable phases in the bulk, L and V , the stack-
ing diagram contains five different stacking sequences. The stacking
sequence VLV can be obtained for a very small range of slopes of
the sedimentation paths for which the path crosses the bulk binodal
twice.

Next, we show in Fig. 12 the stacking diagram at T∗ = 0.065 for
which the bulk diagram shows two coexistence regions. The stacking

diagram consists of three sedimentation binodals (one correspond-
ing to the bulk binodal and two others to the percolation lines), four
terminal lines (two for the critical points and two for the perco-
lation end points), and two asymptotic terminal lines correspond-
ing to the asymptotic behavior of the percolation lines at very high
chemical potentials. We obtain over 20 different stacking sequences.
Some of the stacking sequences are only possible for a small range of
parameters a and s (see the inset of Fig. 12).

D. Sedimentation: Different size particles
We have shown in Sec. III B that the phase diagrams obtained

for mixtures with particles of different sizes have the same topolo-
gies as those for equal size particles. Hence, the stacking diagrams of
mixtures with particles of different sizes have also the same type and
number of boundaries between different stacking sequences.

Here, we investigate if a stacking sequence can be altered by
changing the size of the particles only. To this end, we compare

FIG. 13. Bulk phase diagrams (left) and corresponding stacking diagrams (right). The temperature is set at T∗ = 0.065. Panels (a) and (c) show the bulk phase diagrams in
the plane of chemical potentials of mixtures with relative sizes σ∗ = σB/σA = 1 and σ∗ = 1.3, respectively. Panels (b) and (d) show the corresponding stacking diagrams
in the plane of slope s and intercept a of the paths for σ∗ = 1 and σ∗ = 1.3, respectively. One point in the stacking diagram represents a sedimentation path in the bulk
phase diagram. Illustrative sedimentation paths with stacking sequences LV in the equal size system (a) and VLV in the different size system (c) are shown as red solid
lines. These paths are highlighted with red crosses in the corresponding stacking diagrams [(b) and (d)]. Each region in the stacking diagram contains all paths that give
rise to the indicated stacking sequence.
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stacking diagrams of mixtures with equal and different size parti-
cles at the same temperature (corresponding to the phase diagrams
with the same topology). We consider a sedimentation path for equal
size particles (a point in the stacking diagram) and map it to a sys-
tem with different size particles. Assuming that the particles are
made of the same material, we transform the slope s in the equal
size system to the slope s′ in the different size system according to
Eq. (21), i.e.,

s′ = (v′2/v
′

1)s = σ∗3s, (22)

where v′i is the particle volume species i in the different size system.
The parameter a = μb

2 − sμb
1 is affected by this change and also by the

change in the corresponding chemical potentials. We consider that
both systems share the same bulk chemical potentials, i.e.,

μ′bi = μb
i , i = 1, 2. (23)

Hence, in the different size system, the path has an intercept given
by a′ = μ′b2 − s′μ′b1 .

In Fig. 13, we plot the bulk phase diagrams in the plane of
chemical potentials and their corresponding stacking diagrams for
systems with equal (σ∗ = 1) and different (σ∗ = 1.3) size particles.
Although the stacking diagrams of both mixtures are similar, it is
clearly possible to change the stacking sequences by simply altering
the size of the particles (see the location of the highlighted paths in
the stacking diagrams). The change is driven by the different value
of the slope of the path, which is a direct consequence of the dif-
ferent particle sizes in both mixtures. In general, this change in the
stacking sequence is possible for points in the stacking diagram,
which are close to boundaries between different stacking sequences.
Changes in the stacking sequence by altering the particle sizes also
occur if the bulk diagrams of both mixtures differ substantially. As
shown in Sec. III B, the topology of the bulk phase diagram (and
hence that of the stacking diagram) changes if the size difference
between the particles is large enough. For such cases, there are stack-
ing sequences in one system, which simply do not occur in the other
system.

IV. CONCLUSIONS
The phase behavior of linker-particle aggregating systems has

been investigated using a binary mixture of patchy particles in
which one species has two patches of type A and the other has
three patches of type B. Only interspecies bonding (AB bonds) is
allowed. The fraction of bonds can be controlled by the energy
scale of the bonds AB and by the composition of the mixture. The
temperature–composition and the pressure–composition phase dia-
grams were shown to exhibit two topologies: At low temperatures
(or high bonding energies) and low pressures, there are two coex-
istence regions (one rich in 2A particles and another in 3B) with
lower critical points and an azeotropic point. At intermediate tem-
peratures and pressures, there is a single miscibility gap with upper
and lower critical points. The liquid phase at intermediate composi-
tions is always percolated, and at low temperatures and pressures,
it is possible to obtain a percolated vapor in a narrow region of
the phase diagram. The analysis of the critical properties has shown

that the empty fluid regime3,14 is never reached and that the phase
rich in 3B particles forms larger clusters than the phase rich in 2A.
The analysis of mixtures with particles of different sizes has shown
that increasing the size σB of 3B particles relatively to the size σA
of 2A linkers does not change the topologies of the phase diagrams
but mimics the effect of increasing the temperature or the pressure
shrinking the region of phase coexistence. The percolation lines are
mostly unaffected by the change in particle sizes. These results sug-
gest that the size of the particles can be used as an extra variable
to control aggregation, namely, to avoid phase separation and thus
optimize the structure of equilibrium gels.

It is expected that gravitational effects become important when
the linker-particle aggregating system is formed by colloidal parti-
cles. The stacking diagrams are richer than the bulk phase diagrams.
The bulk diagrams with a single miscibility gap originate five pos-
sible stacking sequences. The bulk diagrams with two coexistence
regions originate more than 20 different stacking sequences under
gravity (some of them containing six layers). It is possible to alter the
stacking sequence by changing the relative size of the components of
the mixture.

We have obtained results for the bulk phase diagrams that
are in line with those of Ref. 8. In addition, we have calculated
the phase diagrams in several representations and incorporated the
effects of different particle sizes and that of gravity. From this anal-
ysis, we conclude that the size of the particles can be used to con-
trol the phase behavior of the mixture, to tune the extent of phase
separation, and to control the stacking sequences displayed under
gravity.

Finally, note that the theory developed in this work can be
applied to any combinations of the parameters (nA, nB) and (σ1, σ2)

and therefore can be used to explore the thermodynamics and struc-
ture of other binary mixtures where particles of different species
bond strongly but in a limited number.
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