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Braiding with magnetic octupoles
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We simulate the trajectories of magnetic octupole colloids driven by periodic loops of an external magnetic
field and placed above a two-dimensional threefold symmetric magnetic pattern. The octupoles avoid the
threefold symmetric points above the lattice, either in a topologically trivial way, or by nontrivially winding
around these high symmetry points both with respect to their position and with respect to their orientation.
We calculate the full dynamical phase space of this winding behavior by changing both lattice symmetries and
modulation loops. We further use the nontrivial topology to braid with octupoles and we supply a protocol for
both braiding and weaving with such microscopic particles. Our classical external field command should work
equally well for quantum mechanical octupoles on magnetic nanopatterns, providing an explicit protocol for the
exchange of anyonic quantum particles.
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I. INTRODUCTION

Robust and precise transport of colloidal particles enables
their use for a variety of applications such as, e.g., lab-on-
a-chip devices [1] and drug delivery with colloidal carriers
[2]. Colloidal transport can be achieved via the application
of global external fields [3,4] such as gravitational, electric,
and magnetic fields. As a result a collection of colloidal
particles is, in general, simultaneously transported along the
same direction. If the colloidal particles are subject to a peri-
odic, time-dependent, external potential the transport can be
of topological nature. That is the case of magnetic colloidal
particles above a periodic magnetic pattern and driven by
a uniform time-dependent magnetic field [5–8]. There, the
orientation of the uniform external field varies periodically
in time performing closed loops. There exist special loops
such that once the field returns to the initial orientation, the
colloids have been transported by one unit cell of the pattern.
The transport is robust against perturbations since it depends
only on global topological invariants. Moreover, despite a
single magnetic external field acts on all particles, the complex
topology of the potential landscape allows the simultaneous
and independent transport of colloidal particles in different
directions, provided that the particles differ in either their
shape [9] or their magnetic susceptibilities [10]. In Ref. [9] we
provide a recipe for individually transporting paramagnetic
bipeds (rods of different length assembled from a collec-
tion of paramagnetic colloids) into different directions. In
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Ref. [10] we simultaneously transported paramagnetic parti-
cles, diamagnetic particles, and induced quadrupolar particles
(consisting of a paramagnetic particle bound to a diamag-
netic particle) in different directions [10]. Simultaneous and
independent transport along different directions is possi-
ble because different particles fell into different topological
classes.

Here, we go a fundamental step further and present a sys-
tem where simultaneous and independent motion of identical
colloidal particles is achieved with a single magnetic field.
The particles are induced colloidal octupoles located above
a periodic magnetic pattern. The highly nontrivial topology
of the octupole potential created by the magnetic pattern and
the external uniform field allows the independent and robust
motion control of identical particles. We use this feature to
create braids by consecutively exchanging two octupoles in a
topologically protected way.

A mathematical braid results from the consecutive per-
mutations of two neighboring strings i and i + 1, where the
ith string crosses the neighboring (i + 1)th string on the top
(bottom) of the other. The sequence of positive (top) and
negative (bottom) permutations characterizes the topology of
the braid when considering both ends of all strings fixed.
An example of a mathematical braid is shown in Fig. 1(a).
There are different sequences of permutations having the same
topology and it is thus possible to deform one sequence into
an equivalent sequence without cutting any of the strings.
Braids play an important role in robust quantum computation
[11] with two-dimensional quasiparticles [12] and in the de-
scription of complex fluid dynamical problems [13,14]. Braids
can characterize structural properties [15] such as tertiary
structures of polymers [16–18], defect lines in nematic liquid
crystals [19,20], and optical vortices [21], but also dynamic
classical trajectories of particles [22], solitons [23], magnetic
holes [24], and animals in a flock [25]. Braids can also be
formed using active colloids [26].
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FIG. 1. (a) A mathematical braid consists of permutation of
strings. There are five strings. The permutation σ1 moves the string
at position 1 to the position 2 above the string that is moved in
the opposite direction. The permutation σ−1

4 moves the string at
position 4 to the position 5 below the string that is moved in the
opposite direction. (b) A trajectory of winding number w = 0 and
w = 1 around a point I1 in translational space. (c) A closed trajectory
of orientational winding number w = 0 and w = 1/2 in the space
spanned by an orientational angle ω and a spatial coordinate x. For an
object with two perpendicular mirror planes, such as a liquid crystal
or an octupole, the orientation angle ω is π periodic.

Braids are an example of a topologically nontrivial state.
Topology is also used to describe complex states in other
areas of physics such as, e.g., in quantum electronics. There,
topological states arise for Bloch electrons that are driven
adiabatically through the Brillouin zone. These topological
states are characterized by topological invariants called Chern
numbers (a higher dimensional generalization of winding
numbers) or for the case of Floquet systems by winding num-
bers. The classical analog of such quantum system is a system
driven periodically in some external parameter space (here
called the control space C). The corresponding topological
invariants are winding numbers of the intrinsic variables of
the system that count how often a closed trajectory in control
space winds around a hole. Examples of winding numbers are
shown in Figs. 1(b) and 1(c). We distinguish winding numbers
of translational degrees of freedom and winding numbers of
rotational degrees of freedom. The latter winding numbers
are commonly used to, e.g., describe the topological charge
of defects of the director field in liquid crystals [27].

The paper is organized as follows. In Sec. II we intro-
duce the model for the colloidal octupoles and describe the
magnetostatic potential (in the point octupole approximation)
created by the periodic magnetic pattern. We introduce a fam-
ily of threefold symmetric magnetic patterns. Each pattern is
characterized by a phase and described in terms of a magne-
tostatic potential. Section III is dedicated to the results. We
discuss the mathematical, topological, and symmetry aspects
of both the magnetic field created by the pattern and the oc-
tupole potential. We provide a dynamical phase diagram of the
driven motion of octupoles and show how to enable individual
and simultaneous control of identical particles. We end the
Results section providing an explicit modulation loop that
accomplishes the exchange of the positions of two identical
octupoles. As examples of simultaneous control of identi-
cal octupoles, we simulate braiding and weaving trajectories

FIG. 2. Scheme of a magnetic pattern with magnetization Mp

exhibiting a sixfold point symmetry. Paramagnetic (blue) and dia-
magnetic (red) colloids are placed above the pattern (restricted to
move on a plane parallel to the pattern). Individual colloids re-
sponding as induced dipoles, bound pairs responding as induced
quadrupoles, and a bound quadruple responding as an induced oc-
tupole to the external magnetic field are represented.

using three and four octupoles, respectively. We conclude in
Sec. IV.

II. MODEL

We use the modulation of the orientation of a homogeneous
time-dependent external magnetic field Hext (t ) of constant
magnitude to drive the motion of colloidal octupoles above a
threefold symmetric pattern (schematics are shown in Figs. 2
and in 3). The set of all possible orientations of Hext defines
the surface of a sphere that we call the control space C. The
octupoles are confined to a plane parallel and above the three-
fold symmetric magnetic pattern. The particles respond to the
adiabatic changes of Hext by changing both their position and
their orientation. We call action space A to the plane where
the octupoles lie. We show here how a winding in control
space causes topologically nontrivial winding of the particles
in action space.

A magnetic dipole moment mpara (mdia) parallel (an-
tiparallel) to the magnetic field H is induced in a single
paramagnetic (diamagnetic) colloid by the total magnetic
field H = Hext (t ) + Hp(rA), as schematically represented in
Fig. 2. Here Hp(rA) is the time-independent magnetic field
created by the magnetic pattern. The magnitude of the pattern
field is much smaller than that of the external field, Hp � Hext,
and hence the induced dipolar moment is almost parallel (an-
tiparallel) to the external field. A bound pair of a paramagnetic
and a diamagnetic colloid of exactly opposite susceptibilities,
connected in the direction of the unit vector epd, forms an
induced quadrupole (see Fig. 2), while four colloids arranged
on a square with paramagnets and diamagnets on the opposite
diagonals of the square (as shown in Fig. 2) form an induced
octupole. Such octupoles created from paramagnetic and dia-
magnetic colloids [28] with exactly the opposite susceptibility
(such that the dipole moment vanishes) ordered in an im-
proper fourfold symmetric arrangement [29] (further killing
the quadrupolar moment) leaves only an octupole moment
qoctHext (epep − eded ). Here ep and ed are the unit vectors of
the paramagnetic and diamagnetic diagonals of the square, as
shown in Fig. 3. Experimentally, induced colloidal octupoles
can be built from paramagnetic and diamagnetic colloidal
particles generalizing the scheme used in Ref. [10] for manu-
facturing induced quadrupolar colloidal particles.
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FIG. 3. Side view: Scheme of an octupole built from paramag-
netic (blue) and diamagnetic (red) colloidal particles with induced
dipole moments (blue and red arrows) above a magnetic pattern
with magnetization Mp in an external field Hext (characterized by
φext, ϑext). Top view: Same octupole with paramagnetic (diamag-
netic) axes ep (ed) and orientation ω above the threefold symmetric
magnetic pattern changing with pattern phase ϕp. The color-coded
octupole potential (blue = minima, yellow = maxima) is plotted
in arbitrary units for an external field Hext pointing along the ez

direction. The threefold symmetric points I1, I2, and I3 of the pattern
(green triangles) are maxima of the potential and hence are avoided
by the octupoles. At certain pattern symmetries one of these points
acquires a proper (green hexagon) or improper (red hexagon) sixfold
symmetry. a1 and a2 are the primitive lattice vectors. Illustrative unit
cells are framed red.

The octupole is confined to a plane z = const parallel to
the magnetic pattern and oriented such that ep × ed = ez, i.e.,
the third axis of the octupole points along the normal to the
pattern (see Fig. 3). Such arrangement can be achieved exper-
imentally via, e.g., sedimentation [5] or magnetic boundary
effects [28]. The lateral position rA of the octupole and its ori-
entation angle ω = ∠(ep, a1) between the paramagnetic axis
and the lattice primitive vector a1 are allowed to arrange as
to minimize the potential Uoct generated by both the external
field and the pattern. We approximate Uoct by the potential of
an induced point octupole:

Uoct = −qoctH
α
ext

(
eβ

p eγ
p − eβ

d eγ

d

)
∂α∂β∂γ ψp, (1)

which is the third term in a multipole expansion of an
arbitrary arrangement of colloidal particles. Note that in
general the multipole expansion also involves a dipolar
term Udip = −qdipHα

ext∂αψp and a quadrupolar term Uquad =
−qquadHα

exte
β

pd∂α∂βψp. However, both terms vanish here since
qdip = qquad = 0 for an octupole like that in Fig. 2. In
Eq. (1), qoctHext is the modulus of the induced magnetic
octupole moment qoctHext (epep − eded ), there is a summa-
tion over repeated Cartesian indices {α, β, γ }, and ψp is the

magnetostatic potential of the magnetic pattern given by

ψp ∝ −e−Qz
2∑

n=0

cos
([
Rn

3·Q
] · rA − ϕp

)
. (2)

Here R3 denotes a rotation by 2π/3 around the z axis, and
Q is one of the primitive reciprocal lattice vectors of the
magnetic pattern. We refer the reader to Ref. [5] for further
details about the magnetostatic potential. We remark here that
the approximations that enter in Eqs. (1) and (2) are accurate
provided that Hp � Hext and that the particles are sufficiently
far from the pattern (a distance comparable to or larger than
the size of the unit cell). The magnetic field of the magnetic
pattern is given by Hp = ∇ψp.

The pattern phase ϕp causes an entire family of threefold
magnetic patterns. In Fig. 3 we show the entire family of pat-
terns by slowly increasing ϕp from ϕp = 0 toward ϕp = π/6.
There are three points I1, I2, and I3 with threefold symmetry
in each unit cell. For particular values of ϕp one of these points
acquires a higher proper (green hexagon in Fig. 3) or improper
(red hexagon in Fig. 3) sixfold symmetry. The magnetic pat-
terns can be experimentally created using, e.g., lithographic
patterning of thin magnetic films [30,31]. In Ref. [5] we have
used such patterns with typical lattice constants of a ≈ 7 μm
to experimentally study the transport of both diamagnetic and
paramagnetic particles.

The orientation of the uniform external magnetic field Hext

(Hext � Hp) is characterized by the tilt angle ϑext with respect
to the pattern normal and by the azimuth angle φext.

III. RESULTS

We use overdamped Brownian dynamics simulations to
characterize the motion of the colloidal octupoles. The mod-
ulated external field Hext (t ) is given as a closed loop. The
period of one closed loop of the external field is much larger
than the characteristic relaxation time of the octupole. There-
fore, the particles can follow the potential adiabatically, which
is possible except if a ratchetlike event occurs. Further details
about the Brownian dynamics simulations can be found in the
Appendix.

A. Dynamical phase diagram

We are interested in both the position and the orientation
(rA, ω) of the octupole as we adiabatically vary the orienta-
tion of the external magnetic field along a closed loop. For
any phase pattern, the periodic octupole potential, Eq. (1),
has always at least one minimum per unit cell that cannot
disappear (independently of the orientation of the external
field). Such minimum usually moves in a continuous way as
we vary the orientation of the external magnetic field. The
result is an adiabatic motion of the octupole that follows the
trajectory of the potential minimum. However, if the number
of minima per unit cell differs from one, then the additional,
excess minima, can disappear at points of instability that
might occur at specific orientations of the external field. If an
excess minimum is occupied by an octupole at the instability,
then the octupole can no longer move adiabatically but jumps
into a remaining minimum at a different location. We thus
distinguish adiabatic trajectories and ratchet trajectories that
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FIG. 4. Dynamic phase diagram in the plane of precession angle ϑext and pattern phase ϕp. Each dynamical phase is characterized by
the number of stable coexisting loops N together with the winding number w = w1 + w2 + w3 around the threefold symmetric points of the
lattice, and the orientational winding number wω. Most phases are adiabatic (solid colors), where the octupole is always quasistable. The ratchet
phases (textured) contain trajectories where a potential minimum converts to a saddle point and the octupole jumps into a new stable position
with a speed independent of the speed of the external field. The panels (a)–(d) and (f)–(g) show coexisting trajectories in a unit cell. In panels
(b) and (f) we show trajectories corresponding to two different values of ϑext as indicated by the two different points in the same phase (the
smaller trajectories correspond to the point at smaller ϑext). Panels (a), (c), and (d) have insets with magnified trajectories. The location of the
threefold symmetric points I1, I2, and I3 can be found in panel (b). Panel (e) shows a driving external field loop together with the definition of
the angles ϑext and φext characterizing the loop. The trajectories in panels (a)–(d) and (f)-(h) are colored in the same way as the modulation path
in (e). The octupole is depicted as a black circle with a paramagnetic director line of orientation ω. We show the orientation of the octupole
at six or three positions on each trajectory. A movie showing the dynamics of (a), (c), (d), (f) and (g) is provided with the Supplemental
Material [32].

contain such irreversible jumps. For being able to adiabat-
ically steer octupoles, it is important to know the number
of minima per unit cell as well as the multiplicity of stable
trajectories for a given modulation loop.

Figure 4 depicts the dynamic phase diagram of the topol-
ogy of the position and orientation trajectories of a single
octupole in the plane of tilt angle ϑext and pattern phase ϕp.
Each point in the phase diagram characterizes the trajectory
of an octupole driven by a modulation loop in which we

adiabatically precess the external magnetic field at fixed tilt
ϑext around the z axis.

The improper fourfold symmetry of the octupole is incom-
patible with the threefold symmetry of the pattern. Hence, in
general there is no orientation of the external field allowing
the octupoles to find a stable position near one of the threefold
symmetric points I1, I2, and I3. [There are only three partic-
ular orientations of Hext at the topological transition between
two phases, where an octupole can reside above a threefold
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FIG. 5. Complex movements of octupoles in the action space A of a C6 symmetric pattern (ϕp = 0) driven by a complex modulation loop in
control space C. (a) Effective movement of the octupoles initially located close to one of the minima a, b, and c to either I1 or I2 upon a transition
of the driving field from the trivial phase in the north, N, w,wω = (3,0,0), to the nontrivial phase in the tropics, N,w, wω = (2, −2, −1/2) at
different azimuths φext as shown in (b). The colors of the octupoles in (a) and the transition angles in (b) match. Only two positions survive
each transition as minima of the octupole potential. Minima moving towards I3 (indicated by the red crosses) are annihilated. (c) Trajectories
of two octupoles a (blue) and b (green) in A subject to the driving loop in C (d). The modulation switches between the trivial phase and the
nontrivial phase and causes the exchange of the octupoles, i.e., the octupole a moves from the position marked as t a

1 via t a
i , i ∈ {2, . . . , 7}

toward t b
1 while the second octupole b moves from the position marked as t b

1 via t b
i , i ∈ {2, . . . , 7} toward t a

1 . The trajectories in (c) and the
driving loop in (d) are colored in the same way. The unit vector e1 (e2) points along the direction of the lattice vector a1 (a2). A movie of the
motion of both octupoles, a space-time plot together with the driving loop is provided with the Supplemental Material [32].

symmetric point, as visible in Fig. 4(d) where the adiabatic
path crosses I1.] From a topological point of view the space
accessible to the octupoles is not simply connected. If ϕp = 0
the pattern has a proper sixfold symmetry at the point I3.

Several characteristics of the octupole potential can be
derived from symmetry arguments. For ϑext = 0 (north pole
of C) the potential inherits the sixfold symmetry of the mag-
netic pattern and the octupole sits on a twofold symmetric
point of the lattice which is commensurate with the particle
symmetry. In each unit cell there are three minima called a,
b, and c [labeled in Fig. 5(a)] located at the twofold rotational
symmetric points midway between the threefold symmetric
points I1 and I2 of the lattice. Let N be the number of co-
existing octupole trajectories for a closed modulation loop.
For ϕp = 0 and ϑext ≈ 0, N = 3 equivalent octupole trajec-
tories coexist (see Fig. 4). In each of the minima, a, b, and
c, the diamagnetic axis is aligned along the I1-I2 direction
[Fig. 4(f)]. These minima shift from these locations toward
a new position slightly displaced towards the I1 position if
we change the pattern toward ϕp = π/6 for which the pattern
acquires an improper sixfold symmetry at I1. The improper
sixfold symmetry causes the I1-I3 direction to be equivalent
to the I1-I2 direction and for this reason there are now three
additional minima between I1 and I3 where, in contrast to
the other three minima the octupoles are oriented with their
paramagnetic axis along the I1-I3 direction [Fig. 4(a)]. There
is a transition in the amount of minima per unit cell from three
minima N = 3 [Figs. 4(b) and 4(f)] toward six minima N = 6
[Fig. 4(a)] as we change ϕp. Tilting the external field ϑext �=
0, π breaks the threefold symmetry and this eventually re-
duces the number of minima per unit cell [see, e.g., Figs. 4(c)
and 4(g)].

Consider a sixfold pattern with ϕp = 0. If we move away
from the north pole of C to the equator, say H1

ext, we find at
least one minimum of the potential in A that is not the twofold
symmetric point. The point −H1

ext (opposite to H1
ext on C) is

a mirror image of H1
ext. Thus, a point mirror symmetric to the

twofold symmetric point in A must be a minimum for the mir-
ror symmetric orientation −H1

ext. However, if we reverse the
magnetic field, all minimum positions of Uoct remain the same
due to the symmetry of an octupole, but the octupole orienta-
tion rotates by ω → ω ± π/2. For this reason, both minima
(the original one and the one for the reversed field) must be
minima to both field orientations H1

ext and −H1
ext. Hence, if

ϕp = 0 and ϑext = π/2 the minima of Uoct occur in pairs lying
symmetric on opposite sides of the I1, I2 midpoints. The two
octupoles residing in such pair of independent minima have a
relative orientation of ω = π/2. For ϕp = 0 and ϑext = π/2
we find only two trajectories, N = 2, per unit cell that coexist
over a driving loop [see Fig. 4(h)]. The twofold symmetry of
the midpoints between I1 and I2 is broken if ϕp �= 0 such that
for larger ϕp and ϑext ≈ π/2 only one trajectory per unit cell
exists over a driving loop, N = 1 [see Fig. 4(d)].

B. Topology of the trajectories

Next, we topologically characterize the adiabatic trajecto-
ries of the octupoles. Recall that we loop the magnetic field
at constant tilt ϑext around the z axis (φext → φext + 2π ). We
define three integer winding numbers w1, w2, and w3 of
the trajectories around the threefold points I1, I2, and I3 in
action space A, respectively. The winding numbers count the
turns of a particle on a trajectory around these points. All
trajectories are related by symmetry and we can unambigu-
ously characterize a dynamical phase by the total winding
number w = w1 + w2 + w3 since at most one wi �= 0. Ad-
ditionally, we define the half integer orientational winding
number wω = 1

2π
ω that counts the total rotation ω of the

octupole along its own z axis during one closed loop. Positive
(negative) values of all winding numbers correspond to the
same (opposite) sense of rotation as the driving field.

For small tilt angles either three or six trajectories coexist
[Figs. 4(a), 4(b), and 4(f)]. All trajectories are topologi-
cally trivial since all, positional and orientational, winding

013043-5



LACHNER, DE LAS HERAS, AND FISCHER PHYSICAL REVIEW RESEARCH 3, 013043 (2021)

numbers vanish. At larger tilt angle we find either one or two
trajectories. For close to sixfold symmetric patterns the trajec-
tories appear in pairs of two, one nontrivially winding around
I1 (w1 = −2,wω = −1/2), the other nontrivially winding
around I2 (w2 = −2,wω = −1/2) [see Figs. 4(g) and 4(h)].
The nontrivial loops are also nontrivial with respect to the ori-
entation. The transitions between topologically trivial (w = 0)
and nontrivial (w �= 0) phases occur via intervening nonadia-
batic ratchets where the octupoles irreversibly jump from one
location to another at a particular φext of the loop. When we
increase ϕp only one nontrivial trajectory (w1 = −2,wω =
−1/2) remains stable and the other trajectory around I2 is
no longer stable [see Fig. 4(d)]. If we decrease the tilt angle
and move toward ϕp = π/6 we eventually cross a topologi-
cal transition line toward one single trajectory with winding
numbers w1 = 1,wω = −1/2 [see Fig. 4(c)]. The winding
numbers not explicitly mentioned vanish.

C. Braiding with octupoles

The existence of dynamical phases in which several
octupole trajectories coexist allows the independent and si-
multaneous steering of identical octupoles. That is, using a
single external field we can independently control the motion
of identical particles. To illustrate this we use complex driving
loops of the external field on a sixfold symmetric pattern to
braid and weave with octupoles.

The octupoles are placed initially in nonequivalent minima
of Uoct. The driving loops consist of (precession) segments
of any φext in either of both phases N,w,wω = (3,0,0) and
N,w,wω = (2,−2,−1/2). These segments are connected by
straight crossings of the topological transition between those
phases at specific φext. The succession of crossings determines
the steering of the octupoles. In Fig. 5(a) we show the effect
of the N = 3 → N = 2 transition at different φext on the three
initially possible nonequivalent octupoles of one unit cell. As
only two of them survive the transition, we have to make
sure only these two nonequivalent positions are filled. The
nonsurviving octupole will relax irreversibly into one of the
other minima of Uoct. The opposite transition is not harmful,
as it creates an empty, unoccupied minimum.

Arranging commands in the right order allows one to move
octupoles in any desired way through the lattice. We can,
e.g., exchange two octupoles on a proper sixfold pattern. In
Fig. 5(d) we show a driving loop that switches back and
forth between the phases N,w,wω = (3,0,0) and N,w,wω =
(2,−2,−1/2) three times and causes the exchange of two oc-
tupoles residing in two distinct minima of Uoct [see Fig. 5(c)].
We also show the two trajectories that guide the two octupoles
from their start location toward the start location of the other
particle.

Highly complex motion such as braiding and weaving
with octupoles can be programed. For braiding with three
octupoles we place two octupoles in neighboring equivalent
minima and the third one in a nonequivalent minimum. The
modulation loop then successively winds the nonequivalent
octupole around one of the two equivalent particles. Fig-
ure 6(a) shows a space-time plot of the three trajectories that
we have deformed into a standard braid, without changing the
topology of the space-time trajectories.

It is possible to weave a space-time carpet by placing
octupoles on a line of alternating minima and then succes-
sively half-winding the nonequivalent octupole around the set
of equivalent octupoles. The trajectory of the nonequivalent
octupole is an intercellular trajectory, while the equivalent
octupoles remain close to their initial positions. In Fig. 6(b)
we show a minimalist example of weaving together with the
generating modulation loop.

IV. CONCLUSIONS

We propose to use the complex topology of the potential
of colloidal octupoles above a periodic lattice for the parallel
and simultaneous steering of identical particles into different
directions driven by a single homogeneous magnetic field.
This allows us to create braids and carpets of any structure, as
the control loop can be adapted throughout the procedure and
is not restricted to a predefined structure as in, e.g., Ref. [26].
In electronic quantum states the semiclassical topology of
Bloch states remains preserved if tunneling between different
bands is prevented by a large enough band gap. Applying a ho-
mogeneous external field to independently but simultaneously
control the motion of equivalent quantum particles (instead
of colloidal particles) on nonequivalent positions of a pattern
should be feasible as well as long as the barrier between
different minima is high enough to prevent tunnel processes.
Such quantum octupoles could be achieved by miniaturization
of the entire setup, the pattern, and the octupoles, to the
nanoscale. Our control loops (specified by, e.g., the series of
transition times in Fig. 6) would provide an explicit protocol
to braid with anyonic quantum octupoles, which is a current
problem of quantum computation [11,33]. Regarding classical
applications, colloidal particles can be used as drug carriers
on lab-on-a-chip devices. With our methodology it could be
possible to deliver payloads to distinct sites in a particular
order using just one global external control field and colloidal
octupoles.

We have demonstrated how to cause the exchange of two
particles using a global spatially homogeneous field to ad-
dress two similar particles in two different ways. A technical
method that externally achieves such exchange in miniatur-
ized quantum particle systems is still missing. The topological
robustness of our process might survive a miniaturization to
the quantum scale and would thus indeed be quite a useful
method.
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APPENDIX: BROWNIAN DYNAMICS SIMULATIONS

The trajectories are calculated using Brownian dynamics
simulations. Time discretization of the overdamped equation
of motion of the colloidal octupoles using the standard Euler
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FIG. 6. (a) Trajectories of three octupoles forming a braid using two octupoles a and a′ (blue) initially placed in equivalent potential
minima of two different unit cells and a third octupole placed in a nonequivalent minimum b (green). Virtual strings colored according to
the corresponding octupoles indicate the movement of the octupoles in time. The braid can be seen at the top of the image, where we have
deformed the trajectories into the standard braid representation without altering the topology. (b) Space-time plot of the trajectories of a
series of equivalent octupoles (blue) woven together by a fourth octupole (green) following a nonequivalent minimum position of the octupole
potential. The complex modulation loop in control space C used to drive the motion is shown on the right via the order of the transition times ti,
i ∈ {1, . . . , 36} between the N,w, wω = (3,0,0) phase and the N, w, wω = (2, −2, −1/2) phase. The paths in action space A are sketched by
vanishing lines on top of the C6 symmetric pattern. a1 and a2 are the lattice vectors of the pattern. The sketches on the left show the schematic
exchange or winding of the particles. Movies of the motion of the octupoles, a space-time plot, and the driving loop are provided with the
Supplemental Material [32].

algorithm results in

ri(t + t ) = ri(t ) − t

γ
∇Uoct (ri, ωi, Hext, t ) + ηi(t ), (A1)

where ri is the position in action space A of the ith octupole,
t is the time step of the simulation, γ is the friction coeffi-
cient against the (implicit) solvent, ωi is the orientation of the
ith octupole (angle between its paramagnetic axis and the lat-
tice primitive vector a1), and ηi is a delta-correlated Gaussian
random displacement with standard deviation

√
2tkBT/γ .

Here kB is the Boltzmann constant and T is absolute
temperature.

We work in units of the magnitude of the first lattice vector
a1, the friction coefficient γ , and the magnitude of the induced
magnetic octupole moment qoctHext times the saturation mag-
netization of the pattern Mp that is qoctHextMp. Hence, the time
is given in units of τ = γ a4

1/(qoctHextHp), and the energy in
units of ε = qoctHextHp/a2

1. The time step of the simulation

is dt/τ = 1/450 000. The period of one loop of the external
field is T0/τ ≈ 1 and the temperature is set to kBT/ε = 10−3

since we are only interested in the adiabatic regime for which
the Brownian motion does not play any role. Nevertheless, due
to the topological character of the motion, the trajectories are
robust against thermal perturbation as we have demonstrated
in Ref. [6] for the case of dipolar particles.

We neglect interparticle interactions between colloidal oc-
tupoles, which is not problematic since the particles stay
always far away from each other due to the external fields
and the reduced size of the particles as compared to the size
of the unit cell. Note that the octupole-octupole interaction
decays very fast with the interparticle distance. To speed up
the simulation, we calculate at each time step the orienta-
tions ωi using the Hessian matrix of the dipole potential, i.e.,
the matrix with elements ∂α∂βUdip. The eigenvectors of the
Hessian matrix give the orientation of the paramagnetic and
diamagnetic axes and hence the orientations ωi. We therefore
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consider that the orientational relaxation of the octupoles is
fast compared to the rotational diffusion, which constitutes a
very good approximation in the adiabatic limit. The inclusion

of free diffusion of particle orientations might play a role in
ratchet events and under strong driving conditions that might
drive the system out of the adiabatic regime.
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