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Using scaled-particle theory for binary mixtures of two-dimensional hard particles with orientational degrees
of freedom, we analyze the stability of phases with orientational order and the demixing phase behavior of a
variety of mixtures. Our study is focused on cases where at least one of the components consists of hard
rectangles, or a particular case of these, hard squares. A pure fluid of hard rectangles has recently been shown
to exhibit, aside from the usual uniaxial nematic phase, an additional oriented phase, called tetratic phase,
possessing two directors, which is the analog of the biaxial or cubatic phases in three-dimensional fluids. There
is evidence, based on computer simulation studies, that the tetratic phase might be stable with respect to phases
with lower translational symmetry for rectangles with low aspect ratios. As hard rectangles are mixed, in
increasing concentration, with other particles not possessing stable tetratic order by themselves, the tetratic
phase is destabilized, via a first- or second-order phase transition, to uniaxial nematic or isotropic phases; for
hard rectangles of low aspect ratio �hard squares, in particular�, tetratic order persists in a relatively large range
of volume fractions. The order of these transitions depends on the particle geometry and dimensions, and also
on the thermodynamic conditions of the mixture. The second component of the mixture has been chosen to be
hard disks or discorectangles, the geometry of which is different from that of rectangles, leading to packing
frustration and demixing behavior, or simply rectangles of different aspect ratio but with the same particle area,
or different particle area but with the same aspect ratio. These mixtures may be good candidates for observing
thermodynamically stable tetratic phases in monolayers of hard particles. Finally, demixing between fluid
�isotropic-tetratic or tetratic-tetratic� phases is seen to occur in mixtures of hard squares of different sizes when
the size ratio is sufficiently large.

DOI: 10.1103/PhysRevE.76.031704 PACS number�s�: 64.70.Md, 64.75.�g, 61.20.Gy

I. INTRODUCTION

Mixtures of three-dimensional rodlike molecules have
been analyzed quite extensively, both experimentally and
theoretically �1�. Beautiful experiments on molecular and
colloidal particles have been reported, with the observation
of different phases, such as isotropic and nematic phases of
various kinds �2�. Of special interest is the issue of orienta-
tional phase transitions and, in particular, of entropically
driven phase segregation in these systems, a long-debated
question in the context of hard spheres �3�. There is now
ample theoretical evidence for segregation and demixing
phenomena in hard-core mixtures of anisotropic particles
�4–9�. Particularly interesting are segregation phenomena be-
tween two nematic phases, which sometimes show upper
critical points �10�. More recently, the occurrence and overall
influence of spatially ordered phases, in the perfect-
alignment approximation, have been analyzed �9,11�, and

more complete studies, lifting the latter approximation, on
the effect of layered phases and microsegregation phenom-
ena on the phase behavior have been carried out �12–14�.

Studies on the corresponding two-dimensional mixtures
are very scarce. In Ref. �15� it was shown that two-
dimensional isotropic mixtures of hard convex bodies can
never demix within scaled-particle theory �SPT�. A unimodal
polydisperse mixture of hard needles was also studied within
the Onsager approach in Ref. �16�, one result being that the
isotropic-nematic transition is always of second order. Also,
an equation of state for two-dimensional mixtures of hard
bodies has been constructed starting from an approximation
for their direct correlation functions �17�; it was found that
demixing never occurs. Finally, a theoretical study has re-
cently been carried out for mixtures of hard rectangles and
discorectangles within the framework of SPT �18�. Using a
bifurcation analysis, demixing between different phases, one
of which is an orientationally ordered phase, was shown to
occur.

The analysis of this problem is sufficiently motivated by
the importance of surface-phase transitions experienced by
monolayers of adsorbed molecules. But, since the transition
from the disordered phase to the oriented �nematic� phase in
one-component fluids may be, and in most cases is, of sec-
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ond order in two dimensions, many new interesting features
may arise in the phase diagram of the mixture, such as tric-
ritical and critical end points, which are absent in three di-
mensions. Our recent work on two-dimensional hard-rod flu-
ids �18� has demonstrated that these systems do in fact
exhibit a richer phase behavior, with the additional fact that,
due to spatial restrictions, phase behavior may be more sen-
sitive to subtle effects associated with the particle geometri-
cal shapes. It would be desirable to understand the differ-
ences and similarities between the two dimensionalities and
elucidate their origin.

In fact, liquid-crystalline phase transitions in one-
component fluids depend strongly on dimensionality. A gen-
eral trend of two-dimensional systems with continuous sym-
metry is the lack of true long-range order �19�, which in a
two-dimensional nematic would be reflected in the presence
of quasi-long-range orientational order �20–24�. Thus, in the
absence of any other mechanism, transitions from the isotro-
pic phase �I� to the uniaxial nematic phase �Nu� in two-
dimensional, one-component fluids of hard rods, may be
governed by a disclination unbinding-type mechanism
�22–24�, as proposed by the Kosterlitz-Thouless �KT� theory
�25� �in fluids of hard ellipses, for which simulations exist
�22,26,27�, the nature of the transition seems to depend on
the aspect ratio �27��. Mean-field theories, which cannot ac-
count for these effects since collective fluctuations and the
dynamics of topological defects are not properly �or not at
all� described, predict continuous transitions of the usual
�mean-field� type �28–30�. However, the direct role played
by dimensionality in two-dimensional mixtures may be of
secondary importance as far as entropically driven demixing
transitions are concerned, since local entropic effects associ-
ated with packing may completely preempt KT-type effects;
in this sense, the mechanisms governing these systems could
be intimately connected with those operating in the corre-
sponding three-dimensional mixtures, which are described
qualitatively correctly by mean-field theories of the density-
functional type �1�.

Of particular interest is the case of hard rectangular par-
ticles, which might exhibit a so-called tetratic phase �Nt� in
the one-component fluid �30–34�. The tetratic phase pos-
sesses two equivalent directors pointing along mutually or-
thogonal directions; it exhibits a symmetry higher than that
of the particles making up the fluid �see Fig. 1 for a rendition
of typical particle configurations in the isotropic, tetratic, and
uniaxial nematic phases in the mixture�. The nature of the
transition from the I to the Nt phases is unknown, but
density-functional studies predict it to be of second order
�18,30�. A recent bifurcation analysis �31�, combined with
further calculations, which include three-body correlations
�34�, have not been conclusive as to the absolute thermody-
namic stability of the tetratic phase with respect to phases
with spatial order, although preliminary computer simula-
tions �32–34� seem to support the tetratic phase as an inter-
mediate phase between the isotropic phase and the crystal-
line phase, at least for aspect ratios less than �7–9 �34�.
However, questions remain as to the maximum aspect ratio
that can support tetratic order �for example, experiments on
non-equilibrium-vibrated monolayers of granular particles
�35� extend it up to �12�, the interplay between the Nt and

the usual uniaxial nematic phase Nu �possessing only one
director or alternatively two nonequivalent directors�, or the
role played by the nature of the crystalline tetratic phase
�with an aperiodic solid being the most promising candidate
�33��. Finally, recent work �36� has shown the ability of these
particles to promote spatial order when confined between
parallel one-dimensional plates, with potentially interesting
applications as building blocks for self-assembly.

The role played by tetratic order in mixtures where one of
the components consists of hard squares or rectangles, while
the other may or may not promote this order, is the aim of
the present paper. We investigate the phase behavior of mix-
tures of hard squares or hard rectangles with other particles
of different geometry. The ability of hard rectangles to in-
duce either short- or long-range tetratic order originates from
the sharp corners of their shape �here we do not address the
question on the existence of true long-range order of nematic
correlations in these systems�. Rectangles with low aspect
ratio �=L /� �with L their length and � their breadth� may
orient along either a particular direction or the orthogonal
direction equally easily without hampering packing effi-
ciency, and a tetratic phase results. For larger aspect ratios,
hard rectangles stabilize into the usual uniaxial nematic.
Hard-rod particles terminated by a semicircle �such as a dis-
corectangle� do not pack efficiently in a tetratic arrangement,
and can only form one �uniaxial� nematic phase. When these

(b)

(a)

(c)

FIG. 1. Typical particle configurations of a binary mixture of
hard rectangles in the �a� isotropic, �b� tetratic, and �c� uniaxial
nematic phases.
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two types of particles, or when two types of hard
rectangles—one exhibiting a tetratic phase which is not
present in the other—mix together, the tetratic order induced
by one component survives, at higher pressures, in some
range of particle volume �area� fractions, with an extent that
depends on the geometrical compatibility between species.
Nematic demixing occurs, and the resulting phase diagrams
show a rich variety of features, such as phase transitions of
different order, triple, critical, tricritical, azeotropic, and criti-
cal end points.

A particular situation is when hard squares of different
particle area are mixed. A consensus is now beginning to
emerge that entropy-driven demixing in additive hard-sphere
mixtures involves spatially nonuniform phases �3�. The cur-
rent situation concerning mixtures of parallel �i.e., with fro-
zen orientational degrees of freedom� hard cubes looks very
similar �37�. Now, despite initial evidence based on simula-
tion that no demixing occurs in a mixture of parallel hard
squares on a lattice �38�, supported by off-lattice density-
functional calculations on the fluid phase �39�, recent simu-
lation work gives evidence for demixing involving an inho-
mogeneous phase �42�. In contrast, our calculations, which
incorporate orientational degrees of freedom �though, admit-
tedly, do not contemplate inhomogeneous phases�, show de-
mixing involving two fluid phases, at least one of which is
oriented �with an island of instability in the phase diagram
and sometimes with an associated upper critical point�, when
the size ratio is sufficiently large, while the completely iso-
tropic mixture does not exhibit segregation. Clearly our re-
sults demand for additional computer simulations on the
freely rotating hard-square model, which have not been re-
ported yet.

After presenting a brief summary of the theoretical ap-
proach, which is a density-functional theory based on the
SPT approximation, we present the results and conclude with
a summary and some final remarks. The Appendix presents
some details on the calculation of spinodal lines and tricriti-
cal points.

II. THEORY

Let us first briefly recall the theoretical model used and
the approximations implemented. The model is based on the
SPT approximation for two-dimensional binary mixtures,
first applied in three dimensions by Cotter and Wacker �43�.
The first extension to the two-dimensional case, a model of
hard rectangles with restricted orientations �44�, was later
rederived for isotropic mixtures of general hard convex bod-
ies �15�. Here we use the implementation of the SPT approxi-
mation for oriented mixtures derived, using the standard pro-
cedures in Ref. �18� to which the reader is referred for further
details. Let us denote the free-energy density f in units of the
thermal energy kT by �, i.e., �= f /kT. The density func-
tional for the corresponding excess �over ideal gas� quantity,
�exc�h1 ,h2�, depends on the two orientational distribution
functions h���� ��=1,2� for the two components of the mix-
ture, � being the angle between the particle main axis and
some reference direction in the plane, which is arbitrarily
taken as the x axis. In SPT approximation it is written as �18�

�exc�h1,h2� = ��− ln�1 − �� +
�

2�1 − ����	

x�x	��V�	
�0�		
 .

�1�

Here the subindices � ,	=1,2 refer to the two components of
the mixture, �=�1+�2 is the total density, with �� the density
of species �, �=�1v1+�2v2 is the total packing fraction, with
v� the particle area for species �, and the number fractions
are defined as usual by x�=�� /�. Also, V�	

�0����=V�	���−v�

−v	, where V�	��� is the angle-dependent, excluded volume
between species � and 	. The double angular average
��V�	

�0�		is defined by

��V�	
�0�		 = �

0

2


d��
0

2


d��h����V�	
�0��� − ���h	���� . �2�

The functions V�	��� are analytical; their expressions were
explicitly written in Ref. �18�, except that corresponding to
the cross interaction between rectangles and discorectangles
�45�.

Note that the one-component limit of Eq. �1� correctly
reduces to the Onsager theory �where only the second virial
coefficient is incorporated� as the density vanishes, since
SPT recovers the exact second virial coefficient; however, in
contrast to the three-dimensional case, the Onsager theory is
not rigorously correct in the hard-needle limit in two dimen-
sions, since three- and higher-order virial coefficients are not
vanishingly small in this limit, some of them being even
negative �46�. Therefore, higher-order contributions in den-
sity are only approximately reproduced by Eq. �1�. SPT can
be considered as a sophisticated Onsager theory in that spa-
tial �not orientational, which are still included up to second
order in density� correlations are somehow resumed into
density-dependent terms. Alternative approaches, such as a
two-dimensional version of the Parsons-Lee approach for
three-dimensional hard rods, have the same structure and, for
lack of a detailed performance analysis, can in principle be
considered to be equivalent. The ideal contribution

�id�h1,h2� = �
�

���ln �� − 1 + �
0

2


d�h����ln�2
h�����

�3�

is added to obtain the complete free energy-functional
��h1 ,h2�=�id�h1 ,h2�+�exc�h1 ,h2�. Functional minimization
of ��h1 ,h2� with respect to h���� gives the equilibrium con-
figuration of the mixture. The pressure follows from the
equation

p

kT
=

�

1 − �
+

�2

2�1 − ��2�
�	

x�x	��V�	
�0�		 . �4�

Instead of numerically solving the Euler-Lagrange equa-
tions associated with ��h1 ,h2�, we follow common practice
in our research group and tackle the direct minimization of
the functional. Various strategies are possible �47�. In the
present paper we choose to introduce a parametrized form
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for the orientational distribution functions, h����. To facili-
tate computations, these functions are simply parametrized
as

h���� =
e��

�1� cos 2�+��
�2� cos 4�

�
0

2


d��e��
�1� cos 2��+��

�2� cos 4��

. �5�

The parameters ��
�k� take care of the two types of orienta-

tional symmetries, either uniaxial �k=1� or tetratic �k=2�.
Equivalently, two order parameters q�

�k� can be defined as

q�
�k� = �

0

2


d�h����cos�2k��, k = 1,2, �6�

which are proportional to the coefficients of a Fourier expan-
sion of the functions h���� including the two lowest symme-
tries that a rectangular particle can generate. Table I summa-
rizes the different phases with their associated values of the
��

�k� and q�
�k� parameters in a one-component phase. The equi-

librium configurations of the mixtures are more conveniently
obtained by minimizing the Gibbs free energy per particle
g= �p+ f� /� with respect to the ��

�k� parameters at a fixed
value of the pressure p and composition x�x1 �we will
henceforth arbitrarily associate x with the number fraction of
the component labeled as 1�. Minimizations were performed
using an efficient routine based on the Newton-Raphson
method. Coexistence �binodal� lines were located by means
of a standard common-tangent construction on g�x�, which
guarantees equality of chemical potentials of both species in
the two phases.

The use of the parametrization Eq. �5� obviously intro-
duces an approximation over the exact calculation, and it
would be of interest to know the amount of error introduced.
As far as the calculation of bifurcation or spinodal lines of
the various phase transitions is concerned, the parametriza-
tion has no impact, since first-order terms in ��

�k�,

h���� =
1

2

�1 + ��

�1� cos 2� + ��
�2� cos 4�� + O����2,

�7�

which appear as quadratic terms in the free energy, are
treated exactly. However, binodal lines and tricritical points
are affected by the parametrization, since their location de-
pends on higher-order terms in ��k�. We have checked the
parametrization in two ways: first, some selected calculations
have been performed using an additional cosine term, cos 6�

�cos 8��, in the parametrization for the uniaxial �tetratic�
nematic phase; the differences found, at the level of coexist-
ence lines, were found immaterial. Second, tricritical points
have been evaluated exactly by computing the exact fourth-
order terms �involving the above cosine terms depending on
the symmetry of the phase�. In all cases the differences with
respect to the calculations using Eq. �5� have been found to
be of minor importance. The analysis is presented in the
Appendix, which contains quantitative details on this issue.

III. RESULTS

Results are presented, in the form of pressure-composition
phase diagrams, in Figs. 2–9. We divide the presentation by
first showing results for different mixtures containing
squares and disks, followed by mixtures of hard rods �rect-
angles and discorectangles�. In the following we will gener-
ally use the following acronyms for the different particles:
HS �hard squares�, HD �hard disks�, HR �hard rectangles�,
and HDR �hard discorectangles�.

A. Mixtures of hard squares

The fluid of freely rotating hard squares has been studied
by Monte Carlo simulations �32�, with indications that a tet-
ratic phase might be stable prior to crystallization. On the
other hand, mixtures of hard squares have been analyzed by
computer simulations �38,42� and density-functional theory
�39� in the approximation of perfect orientational order. In-
dications that there is no demixing in this system �27,38�
were later challenged by evidence for a spinodal line from
Monte Carlo simulation �42�; the demixing transition in-
volves a fluid phase and a phase with big squares in close-
packed aggregates. Since orientational disorder may be im-
portant for these mixtures, we believe it is of interest to
address this problem with the SPT approximation, where ori-
entational disorder is allowed �obviously our approach can
only search for demixing behavior involving fluid, either iso-
tropic or tetratic, phases�.

The results shown in Fig. 2 correspond to a mixture of
freely rotating squares with size ratio 1:10, and have been
gathered in a pressure-composition phase diagram, with label
1 assigned to the larger particles. According to SPT theory,
the fluids of the unmixed �one-component� species both ex-
hibit corresponding second-order I-Nt phase transitions at re-
duced pressure pv /kT�0.52 �here v is the particle proper
area�. Note that, for squares, a uniaxial nematic phase is not
possible by construction. For the mixture, the only possible
�fluid� phases are also the I and Nt phases. Remarkably, the
mixture exhibits segregation between two tetratic phases
with different area fractions occupied by the two compo-
nents. The region of demixing is a closed loop bounded
above �below� by an upper �lower� critical point �in fact,
since the I-Nt spinodal line crosses the demixing region—see
inset showing schematic topology—segregation mostly pro-
ceeds between I and Nt phases�. Since mixtures of perfectly
parallel hard squares do not demix it is surprising that, in this
mixture, orientational disorder induces demixing.

Closed loops of immiscibility have been predicted in mix-
tures of hard rods in the Onsager approximation �7,8� �see,

TABLE I. Possible values of the variational parameters ��k� and
order parameters q�k� in the isotropic �I�, uniaxial nematic �Nu�, and
tetratic �Nt� phases.

Phase ��1� ��2� q�1� q�2�

Isotropic, I 0 0 0 0

Uniaxial nematic, Nu �0 
0 �0 �0

Tetratic nematic, Nt 0 �0 0 �0
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however, Ref. �48��, and also in fluids of parallel hard rods
�49�, both in three dimensions. Our calculations show that
they are also a property of some two-dimensional mixtures.
In our case demixing occurs at fairly low values of compo-
sition; this is easy to explain since we expect segregation to
take place when the volume fraction of both components are
approximately equal, �1��2, which implies that segregation
will occur for x�v2 /v1=10−2. As the size ratio of the
squares decreases, the island of immiscibility diminishes,
and we are eventually left with a second-order I-Nt transition
in the whole composition interval. The demixing island dis-
appears when the size ratio is equal to 1:4 �see the Appen-
dix�.

The mechanism underlying Nt-Nt demixing is different for
the upper and lower parts of the demixing island. As is well
known, demixing and ordering phenomena in mixtures of
hard anisotropic particles result from the competition of
entropies of different origin: mixing, orientational, and
excluded-volume entropies. In the transition from the isotro-
pic to the nematic phase the last two terms compete. In mix-
tures, the excluded-volume entropy has contributions from
the two species and from the unlike-particle interactions. The
mechanism explaining the lower Nt-Nt segregation phenom-
ena in Fig. 2 is the classical one: the balance between mixing
entropy and the excluded-volume term of unlike species,
which counterbalances the tendency toward mixing of the
former. However, the upper Nt-Nt segregation region has a
different origin, since here orientational entropy plays a role.
This might have been suspected a priori, since in the limit of
perfect order �parallel squares� no demixing occurs. At suf-
ficiently high pressures in the freely rotating fluid, suffi-

ciently near the close-packed limit, the orientational order is
almost saturated and can no longer compete with the other
terms, so that no demixing is expected. As pressure is re-
duced, orientational entropy begins to play a role and in fact,
the contribution from the small squares is the driving force
toward demixing.

For the size ratio shown �1:10�, two critical end points,
indicated in the figure by filled circles, appear in the phase
diagram, defined by the points where the I-Nt spinodal line
crosses the demixing region. Note that, on general grounds, a
critical end point is defined in a situation where two phases
coexist, one of them being a critical phase. A critical end
point can be defined by a coexistence condition �common-
tangent construction in our computational scheme� plus a
condition for criticality �loss of convexity of the Gibbs free
energy of one of the phases�. However, this point cannot be
obtained analytically �contrary to the tricritical points� and,
similar to the binodal lines, has to be calculated numerically.
In our case, the location of these points, given by x�1�*

=0.012, p�1�*v2 /kT=13.86, and x�2�*=8�10−5, p�2�*v2 /kT
=49.38, can be approximated from the set of candidates to
tricritical points obtained by means of a bifurcation analysis
�here and in what follows, numerical values for the location
of tricritical points should be understood to result from rig-
orous bifurcation analysis of the free-energy functional, and
may in some cases be at variance with those obtained from
the variational minimization, on which all the phase dia-
grams presented are based; see the Appendix for details on
the bifurcation analysis�. As the size ratio is diminished, first
the upper critical point disappears, and the upper critical end
point becomes a tricritical point; then the lower critical end
point becomes a tricritical point, and the lower critical point
also disappears, leaving two tricritical points before the
whole demixing region vanishes. The lower critical point
always stays within the Nt region �i.e., no I-I demixing is
observed�.

Demixing in this mixture is therefore associated with a
symmetry-breaking phase, the tetratic phase. There are
strong arguments �15� disallowing demixing in the I phase
�within the context of the SPT approach�. This would not
necessarily imply that demixing is completely ruled out in
the rotationally symmetric I phase of hard-square mixtures or
mixtures of particles with different geometries, but a more
sophisticated theory, incorporating exact higher-order virial
coefficients �which are known to be important for two-
dimensional hard convex bodies�, would be necessary to
settle this point.

B. Mixtures containing squares and disks

Figure 3 shows the phase diagram corresponding to a
mixture of hard disks and squares �the diameter of the former
being equal to the side length of the latter�. Here only one of
the components �the squares� has tetratic order. By choosing
the particle areas of both species to be approximately equal
�the ratio being �0.79� we focus on the role of particle
geometry. In this mixture we find that the Nt phase exhibited
by the pure system of squares survives up to a maximum
concentration of disks of �50% �this corresponds to an area
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FIG. 2. Phase diagram of a hard-square �L�=�� for �=1,2�
mixture with L1 /L2=10 in the scaled-pressure pv2 /kT vs composi-
tion x=x1 plane. Open circles: critical points. Filled circles: critical
end points. The inset is a qualitative scheme depicting the relative
locations of the I-Nt spinodal and the region of demixing. The two-
phase region is indicated by the gray area. Note that the scale of the
composition �horizontal� axis is discontinuous.
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ratio approximately equal to 0.79�. Complete demixing oc-
curs at high pressure, while the I-Nt transition becomes of
second order below a tricritical point, located at x=0.57,
pv1 /kT=131.95 �see the Appendix�. Fractionation becomes
stronger as pressure is increased, since excluded-volume
considerations are increasingly important in this limit: geo-
metrical mismatch �given by the unlike disk-square interac-
tion� grossly counterbalances mixing entropy, inducing
strong segregation.

C. Mixtures of rectangles and discorectangles

Hard rectangles have been predicted to exhibit a phase
with tetratic order when their aspect ratio is sufficiently low
�30–34�. Tetratic order is enhanced as the aspect ratio of the
rectangles is decreased. However, there is some uncertainty
as to the critical value of � beyond which the tetratic phase is
no longer possible; the SPT approach indicates that for �
�2.21 the stable nematic phase is the tetratic nematic �50�
�as mentioned in the introduction, computer simulations in-
dicate that this value may be much larger, in the range �7–
9�. In contrast, a fluid of hard discorectangles can only sup-
port a uniaxial nematic phase �23�.

In previous work �18� we analyzed possible demixing sce-
narios of mixtures of hard rectangles �HR� and mixtures of
hard discorectangles �HDR�, using the same SPT theory. In
this section we further investigate this problem by consider-
ing a wider range of mixtures, in particular, crossed mixtures
�i.e., mixtures consisting of HR and HDR particles�; the ef-
fect of particle geometry is an aspect that can be assessed in
a very direct way by analyzing crossed mixtures, as well as
the role played by the tetratic phase against the standard
uniaxial nematic phase when particles of different geom-
etries are mixed. Results will be presented by means of phase

diagrams including, not only spinodal lines, but also binodal
lines when present.

In the following we first consider mixtures of hard rods,
one of which can be stabilized into a tetratic phase �i.e., HR
particles with aspect ratio ��2.21� while the other cannot
�i.e., either HR particles with ��2.21, or HDR particles�.
We intend to understand how the tetratic phase is destabi-
lized by the geometrical mismatch of the particles.

The first mixture that we consider is a mixture of HR and
HDR particles, both with �=2 �in the latter case the aspect
ratio parameter is defined as �= �L+�� /��. Also, the same
particle areas have been chosen for both types of particles, in
an attempt to single out features of phase behavior mainly
driven by differences in particle geometry. The resulting
phase diagram is depicted in Fig. 4. At high pressure a de-
mixing region occurs between two uniaxial nematic phases
�i.e., there is Nu-Nu demixing�, bounded by a lower critical
point. Fractionation becomes stronger as pressure increases,
an effect ultimately associated with the slight difference in
particle geometry, which penalizes the mixed state due to
unfavorable packing between dissimilar particles; this arises
from the circular caps of the HDR particles. At lower pres-
sure there is a transition between the isotropic and the
uniaxial nematic phases, which occurs via a first-order phase
transition with small fractionation. The phase diagram is of
the azeotropic type: an azeotropic point �no fractionation�
appears at x�0.32, with an associated �small� pressure range
where the Nu phase is reentrant. Since the HR component of
the mixture possesses a stable tetratic phase, an island of
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FIG. 3. Phase diagram for a HS/HD mixture in the scaled-
pressure pv1 /kT vs composition x=x1 plane, with v1=L1�1 the vol-
ume of the squares. The side length of the squares, L1=�1, is cho-
sen to be the same as the diameter of the disks, �2. The filled circle
indicates a tricritical point. The two-phase region is indicated by the
gray area.
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FIG. 4. Phase diagram for a HR/HDR mixture in the scaled-
pressure pv1 /kT vs composition x plane. The two components have
the same aspect ratio ��1=L1 /�1=2 for the rectangles and �2

= �L2+�2� /�2=2 for the discorectangles�, and the same particle
area. The open circle indicates the critical point, the shaded circle
denotes an azeotropic point, while the filled circles indicate tricriti-
cal and critical-end points. Two-phase regions are indicated by gray
areas.
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tetratic order exists for high values of x, separated from the
isotropic phase via a second-order phase transition and from
the uniaxial nematic via a first-order transition �of course this
is also the case for the pure HR fluid, x=1�. The island of Nt
stability is very small; for a HR fluid with �=2, the range of
pressures where the tetratic phase is stable is small �31� but,
in addition, tetratic order is easily destroyed when adding to
the mixture particles that do not conform with tetratic sym-
metry.

Next we consider two different mixtures that represent
slight variations with respect to the previous mixture. In Fig.
5 we analyze a HR/HDR mixture, where the HR component
has been shortened to an aspect ratio of �1=1.5, keeping the
breadth to the same value, while the HDR component still
has �2=2 but the particle area is made equal to that of the
HR particle of the previous mixture. Essentially we would
like to analyze the effect of shortening the hard-rectangle
component in the previous mixture �while at the same time
reducing its particle area by 25%� with the aim of increasing
the strength of tetratic ordering. Since the tetratic phase of
the one-component HR fluid is much more stable, the tetratic
phase in the mixture stabilizes into a larger range of compo-
sitions. The diagram is topologically equivalent to that in
Fig. 4, except that the critical end point in the I-Nt spinodal
line now becomes a tricritical point, and there appears a
�new� I-Nu-Nt triple point.

Nontrivial changes are obtained if the mixture of Fig. 4 is
changed by shortening the HDR particle down to an aspect
ratio of �2=1.5 while the particle area is made equal to that
of a HR particle of aspect ratio 1.5 and unit breadth; as a
result, the nematic phase of the one-component HDR fluid
appears at a much higher pressure. The phase diagram is
presented in Fig. 6. This phase diagram can be regarded as a

continuation of that in Fig. 4 where the Nu-Nu demixing re-
gion and the I-Nu coexistence have collapsed into a single
demixing region. The I-Nt phase stability region now in-
creases, as a result of the HDR particle having a lower proper
area.

D. Mixtures of rectangles

Finally, we consider mixtures of HR particles. Here the
breadth of all particles will be taken to be unity, and we
change the length or, equivalently, the aspect ratio. Three
cases are considered: �i� �1=5, �2=10, so that none of the
components exhibits tetratic symmetry; �ii� �1=2, �2=1.5,
with both species having tetratic phases; and �iii� �1 in the
range 4.0–5.0, �2=2, so that only the second species can
stabilize into a tetratic phase. This cases are shown in Figs.
7–9, respectively.

In mixture �i� no tetratic phase appears �Fig. 7�. There is
Nu-Nu demixing at high pressure. The I-Nu transition is of
first order, but becomes of second order at a tricritical point
�see inset�, located at x=0.35, pv1 /kT=4.07 �see the Appen-
dix�.

The aspect ratios of the two components of mixture �ii�,
�1=2 and �2=1.5, were chosen such that both possess a
stable tetratic phase. This requires their values to be very
similar; therefore, no demixing occurs �Fig. 8�, and a rela-
tively featureless phase diagram results.

Finally, in mixture �iii�, the shorter component exhibits a
tetratic phase that propagates from the x=0 axis into finite
values of composition when the longer component is added;
however, due to the considerable difference in lengths be-
tween the two species, the Nt phase does not survive very
much as a function of composition; in fact, the region of
tetratic stability can hardly be seen in the phase diagram, Fig.
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FIG. 5. Phase diagram for a HR/HDR mixture in the scaled-
pressure pv1 /kT vs composition x plane. Values of the parameters
are �1=1.5, �1=1 for the rectangles and �2=2 and the same particle
area as a rectangle of aspect ratio equal to 2 and unit breadth for the
discorectangles. The open circle indicates the critical point, the
shaded circle denotes an azeotropic point, while the filled circles
indicate tricritical points. Two-phase regions are indicated by the
gray areas.
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FIG. 6. Phase diagram for a HR/HDR mixture in the scaled-
pressure pv1 /kT vs composition x plane. Values of the parameters
are �1=2, �1=1 for the rectangles and �2=1.5 and the same particle
area as the rectangle of aspect ratio equal to 1.5 and the unit breadth
for the discorectangles. The filled circle indicates critical end points.
The two-phase region is indicated by the gray area.
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9. At high pressure there is a large demixing region which, as
the particle aspect ratio of the first component is increased
�from 4.0 to 5.0�, expands considerably. Again demixing is
due to unfavorable excluded-volume interactions between
unlike species. In general, the phase diagram varies consid-
erably even for very slight variations in particle shape of the
first species. For �1=4.0 and 4.6, a separate region associ-
ated with the first-order I-Nu transition appears at low pres-
sures; in some cases �cf. the case �1=4.6� reentrant behavior
in the nematic phase �stronger than in three-dimensional
hard-rod mixtures-see, e.g., Ref. �5��, is found. Also, for the
case �1=4.6 an upper critical point associated with Nu-Nu

demixing can be seen. This feature has been seen in three-
dimensional mixtures of thin and thick hard rods of the same
length; in our two-dimensional mixture the particle thickness
is the same, and it is particle length that is different. There-
fore, in some range of parameters two Nu-Nu coexistence
regions can be found, with upper and lower critical points.
These two regions merge as �1 increases, giving rise to a
very large demixing region.

IV. DISCUSSION AND CONCLUDING REMARKS

To conclude, we have analyzed the phase behavior of
mixtures of two-dimensional hard rods, using the scaled-
particle theory approximation. We have particularly concen-
trated on mixtures containing hard rectangles as one of the
components, with the other being a hard discorectangle,
which we have called crossed mixtures. The geometry of
hard rectangles allows for a tetratic phase to be stabilized;
addition of a second component, which does not support this
symmetry, obviously tends to destroy tetratic order but, when
the particle areas of both components are not very dissimilar
and the pure fluid of hard rectangles strongly stabilizes the
tetratic phase �i.e., when their aspect ratio is relatively low�,
tetratic order may survive even for large area fractions of the
non-tetratic-forming component. The case of a mixture of
hard rectangles, one with tetratic order and the other without,
shows the same trends.

As a special case we have also considered mixtures of
hard squares, and found that these mixtures do exhibit nem-
atic demixing, contrary to the case where rotational degrees
of freedom are frozen; in the latter case the mixture never
segregates into two fluid phases �though simulations seem to
point to segregation between fluid and nonuniform phases�,
while in the former there is a critical size ratio �1:4� above

0 0.2 0.4 0.6 0.8 1

x
0

75

150

225

300

375
pv

1
/k

T

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

14

Nu

Nu

I
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circle: critical point. Filled circle: tricritical point. Two-phase re-
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which there is segregation. This is a remarkable case where
orientational disorder induces entropy-driven demixing �i.e.,
mixing order�. Inclusion of nonuniform phases in our theo-
retical analysis would certainly be interesting and is left for
future work. Growing evidence indicates that demixing in
additive hard-core mixtures always involves at least one in-
homogenous phase. An interesting possibility is that freely
rotating hard-core mixtures �which can be viewed as a spe-
cial case of nonadditive mixture� may in some cases segre-
gate into two fluid phases, provided nematic phases are in-
volved; it could be that some type of symmetry breaking,
either positional or orientational, is required for demixing to
occur.

In general, phase diagrams of two-dimensional hard-rod
particles closely resemble those of three-dimensional mix-
tures, save the fact that the isotropic-nematic transition in
two dimensions may be �and actually is in most cases� of
second order, which adds an element of complexity to the
corresponding phase diagrams. Nematic-nematic demixing
generally occurs in these systems and, for sufficiently large
size ratios between the components, demixing competes with
the isotropic-nematic �either uniaxial or tetratic� transition.
Entropic effects due to balance between excluded-volume
interactions of like and unlike components and mixing en-
tropy produce strong fractionation. These effects probably
counteract collective fluctuations leading to KT-type behav-
ior; for example, within our mean-field density-functional
treatment, the continuous isotropic-nematic transition of the
one-component fluid generally continues as a critical transi-
tion in the mixture, but sooner or later, beyond some value of
particle composition, a demixing �first-order� transition is
met via a tricritical point or otherwise �critical end point�.
However, the true nature of the isotropic-nematic transition
in these mixtures, and of the uniaxial and tetratic nematic
phases themselves �i.e., whether they possess true or quasi-
long-range order� is an issue that should be investigated by
means of detailed computer simulations and possibly also by
experiments on vibrated monolayers.

In this work we have not considered spatially ordered
phases, such as smectic, columnar, or crystalline. Certainly
some of these phases will appear at some pressure, and prob-
ably some of the phase behavior shown for the mixtures
considered will be preempted by these phases. More sophis-
ticated density-functional treatments are required to assess
this point; some proposals have already been done for one-
component two-dimensional hard-rod systems �31�, but even
the consequences of these approaches have not been ex-
plored yet; this will be the subject of future work �51�.
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APPENDIX: BIFURCATION ANALYSIS

In Ref. �18� two of us carried out a bifurcation analysis to
study the nature of phase transitions in two-dimensional

hard-rod fluid mixtures and to calculate the location of the
tricritical points present in their phase diagrams. We refer the
reader to this work for details on the calculations. For the
sake of completeness, a brief summary of the main ingredi-
ents of the bifurcation analysis is presented here.

The Fourier series representation of the orientational dis-
tribution functions of the two different species, labeled as
�=1,2, is

h���� =
1

2

�1 + �

k
1

�

hk
��� cos�2k��� . �A1�

After inserting these expressions in the free energy per par-
ticle �=� /� and expanding in Taylor series with respect to
the Fourier amplitudes hk

���, we obtain a Landau expansion
for ��=�N−�I, the free-energy difference between the ori-
entationally ordered and isotropic phases, in terms of these
amplitudes. Further, minimizing ����hk

����� with respect to
all amplitudes except one �here chosen as hi�hi

�1�, with i
=1,2 for uniaxial and tetratic nematic phases, respectively�,
and substituting the result back in ��, keeping terms up to
fourth order, we obtain the expression

�� = Ahi
2 + Bhi

4. �A2�

The coefficients A�x ,�� and B�x ,�� are both functions of the
composition x�x1 and packing fraction �. The spinodal
curve of the transition between the isotropic and nematic
�uniaxial or tetratic� phases can be calculated as A�x ,�*�=0,
which defines the packing fraction �*�x� as a function of the
composition.

It can be shown �18� that the instability region of the
mixture with respect to composition and volume fluctuations
defines a region in the plane ��1 ,x�, at fixed �2, bounded by
curves calculated as the roots of the function TN

* , defined by

TN
* = TI

* −
1

2B*� �

�y
�y2��I

�y

*

�Ax
*�2 + � �2�I

�x2 
*

�y*Ay
*�2

− 2� �2�I

�x � y

*

�y*�2Ax
*Ay

*� , �A3�

where

TI =
�

�y
�y2��I

�y

� �2�I

�x2 
 − �y
�2�I

�x � y

2

. �A4�

Here y=� / �1−��, and the asterisk over any function of y
means that this function is to be evaluated at y*, its bifurca-
tion value �note the different definition of y with respect to
the one used in Ref. �18�; both coincide when v�=1, the
constraint used in Ref. �18��. Finally, Ax

* and Ay
* are the par-

tial derivatives of A with respect to x and y, respectively,
both evaluated at y*.

1. Mixtures of hard squares

The packing fraction at the spinodal line obtained as the
solution of A�x ,�*�=0 is a constant, independent of x, and is
equal to �*= �1+8/ �15
��−1. Further, the I-Nt tricritical
points can be calculated as the roots of
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TNt

* =
16

x1x2
�1 −

2

11
s3

2�1 + s2
2 + 15

�s2 − s1�2

1 + s1
2 �
 , �A5�

with

si =���2i	
��i	2 − 1, i = 1,2, s3 =� 11��2	3

16��4	��2	 − 5��3	2 ,

�A6�

where we defined �un	=�ixiui
n. Introducing the new variable

�=x2v2 / �v	, and after some lengthy but straightforward cal-
culations, we arrive at

TNt
* =

16

x1x2

�25z2 + �34 − 16r�z + 9�
�11 + z�16r + 6 − 5z�� , �A7�

where the new variable z= �r−1�� was introduced, and we
defined r=�1 /�2. The quadratic equation of z given in the
numerator of Eq. �A7� has the following roots:

�1,2 =
1

25�r − 1�
�8r − 17 ± 4��r − 4��4r − 1�� . �A8�

We can see from this expression that demixing can only oc-
cur for r�4. The pressure at the tricritical point can be cal-
culated using the value of the roots found above, resulting in

p*�1
2

kT
=

15


8r2 �r2 − �r2 − 1�� +
15

2
�r − �r − 1���2� . �A9�

For r=10 we find

�1,2 =
1

75
�21 ± 4�26� , �A10�

with the approximate values �1�0.5519 and �2�0.0081.
Using x2=� / �r2− �r2−1���, we find x2

�1�*�0.0122 and x2
�2�*

�8.12�10−5, while the values for the pressures are
p�1�*�1

2 /kT�13.8603 and p�2�*�1
2 /kT�49.3842.

In Fig. 10 are shown the mixed and demixed states of the
hard-square mixture in the �-r−1 plane, as obtained from the
roots in Eq. �A8�. We have checked that this is indeed the
scenario for values of r not too much larger than its critical
value r*=4, i.e., the I-Nt transition changes from second
�first� to first �second� order above �below� the lower �upper�
tricritical point. As we have already shown, the phase dia-
gram for r=10 has two critical points, but the tricritical
points are located close to the critical end points �see Fig. 2�.

2. Mixtures of hard squares and hard disks

The solution to the equation A�x ,�*�=0 gives us the fol-
lowing expression for the isotropic-tetratic spinodal curve:

�* = �1 +
8x�1

2

15
�v	�−1

, �A11�

while the solution to TNt

* =0 can be found also analytically as

x* = �1 +
16

35
� 4�1


�2

2�−1

. �A12�

Finally, the pressure at the tricritical point can be calculated
as

p*�1
2

kT
=

15


8x* �1 +
15

2x*�1
2�
�2

4
+ ��1 −


�2

4

x*�2
 .

�A13�

For �1=�2=1 we find �x* , p*v1 /kT���0.5744,131.9459�.
The value for the composition calculated from the minimi-
zation is about 0.53 �see Fig. 3�. This difference is due to the
parametrization used. One should include, in the exponential
parametrization of the orientational distribution functions,
terms such as ��

�2� cos 4�+��
�4� cos 8� to properly take into

account the tetratic symmetry about the tricritical point.

3. Mixtures of hard rectangles

For mixtures of hard rectangles the isotropic-uniaxial
nematic spinodal calculated as the solution to A�x ,�*�=0
gives

�* = �1 +
2

3


��L − ��2	
�v	 �−1

. �A14�

The value of the pressure at bifurcation is

p*v1

kT
= y*�1 +

3

2

��L + ��	2

��L − ��2	� . �A15�

Solving TN�x ,�*�=0 numerically with respect to x for a par-
ticular mixture with �L1=10,�1=1� and �L2=5 ,�2=1�, we
find a value of x*�0.3472, which defines the location of the
tricritical point. The packing fraction and the pressure at this
point are �*�0.4515 and p*v1 /kT�4.0659, respectively.
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FIG. 10. The mixed and demixed states that follow from the
solution to TNt

* =0, with TNt

* given by Eq. �A7�.
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