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Edge currents of paramagnetic colloidal particles propagate at the edge between two topologically equivalent
magnetic lattices of different lattice constant when the system is driven with periodic modulation loops of an
external magnetic field. The number of topologically protected particle edge transport modes is not
determined by a bulk-boundary correspondence. Instead, we find a rich variety of edge transport modes that
depend on the symmetry of both the edge and the modulation loop. The edge transport can be ratchet-like
or adiabatic, time or non-time reversal symmetric. The topological nature of the edge transport is classified
by a set of winding numbers around bulk fence points extended by winding numbers around edge specific
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1 Introduction

The bulk-boundary correspondence states that two “wave” systems
coupled at an edge will support edge-states at the boundary that live
in the frequency gap of both bulk systems provided that the Chern
numbers of the upper bands of both coupled systems are different.
Rudner, Lindner, Berg and Levin® have generalized the bulk-
boundary correspondence to periodically driven two-dimensional
systems. There, the number of edge modes is characterized by the
difference of the winding number of the time dependent evolution
operators of the two bulk systems coupled at the edge. Hence, the
bulk properties of the coupled system are sufficient to predict the
existence or absence of edge states. No knowledge of the edge
between the two bulk systems is required.

In previous works we have shown how the motion of colloidal
particles above periodic magnetic lattices can be of topological
nature,>® and how the same topological concepts apply to both
particle and “wave” systems.”** Working with colloidal systems, as
opposed to “wave” systems has however the advantage of a direct
visualization of the motion and can therefore be more intuitive.
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bifurcation points that cannot be deduced from the two bulk lattices.

Here, we present an example of propagating edge colloidal
currents between two coupled bulk lattices that differ only in
their lattice constant and therefore are topologically equivalent.

Since we couple a primitive unit cell of one lattice to a larger unit
cell of the other lattice, the translation invariance to translations
with unit vectors of the larger lattice along the edge is preserved in
the coupled system. If we continuously change the size of the
smaller lattice while keeping the size of the larger lattice fixed,
the two lattices become incommensurate to each other and the
translation invariance with larger lattice unit vectors is violated.
There exists no continuous deformation of the smaller lattice to the
larger lattice that preserves the simultaneous translation invariance
of both lattices with respect to unit vectors of the large lattice.
Therefore, the bulk-edge correspondence does not apply here but
we still find propagating edge states despite the topological equiva-
lence between both lattices. The edge states are a robust feature
since they are topological in nature. However, they are topological
not because of a contrast in topology between two bulk materials.
The edge states are edge penetrating spirals that share similarities
with skipped orbits®'® 2 that are edge states between topologically
distinct lattices. The response of the edge current to the driving
force differs depending on whether the winding numbers of the
modulation loop around special points are odd or even. We
demonstrate that a variety of edge transport modes is possible
between topologically equivalent lattices.

2 Edge transport between two
square lattices

We illustrate the richness of the edge transport modes between
topologically equivalent lattices using the simplest lattice that
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supports topological transport in bulk: a square magnetic
lattice.*” We study experimentally and with computer simula-
tions the colloidal motion above the edge of two joint magnetic
square patterns with different size of the unit cell. The primitive
lattice vectors of the large pattern are double in magnitude
compared to the primitive lattice vectors of the small pattern.
In the experiments, paramagnetic colloidal particles move
above a thin Co/Au layered system with perpendicular magnetic
anisotropy lithographically patterned via ion bombardment.>*"?**
The pattern consists of a patch of alternating square domains with
a mesoscopic pattern lattice constant a &~ 14 um adjacent to a half
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sized square pattern, see a sketch in Fig. 1a. The whole pattern
is magnetized in the +z-direction normal to the film. The
magnetic pattern is spin coated with a 1.6 pm polymer film
that serves as a spacer. The paramagnetic colloidal particles
(diameter 2.8 um) are immersed in water and their centers
move at a fixed elevation z ~ 3 um above the pattern.> Hence,
the colloidal particles move in a two-dimensional plane that we
refer to as action space, A. A uniform time-dependent external
magnetic field He,(t) of constant magnitude (Hey = 4 kA m ™)
is superimposed to the non-uniform and time-independent
magnetic field generated by the pattern Hy,. We also study the

Fig. 1 (a) A paramagnetic colloidal particle on top of a magnetic artificial domain pattern subject to a time dependent superposed external magnetic

field Hex (t) € C of constant strength but varying orientation. The magnetic pattern below the colloid consists of two square lattices of lattice constants a
and a/2 merging at an edge. The regions above the pattern that can be converted into a minimum of the colloidal potential are the allowed regions, the
other regions are forbidden and they can only be converted into saddle points of the colloidal potential but not into extrema. A loop in control space can
cause a net transport over a period at the edge even when it does not cause net motion in the bulk of either lattice. The chiral cyclotron control loop
shown in (b) adiabatically transports the colloid on a zig-zag path (yellow and green) and zag-zig path (cyan and blue) through allowed regions until it hits
a forbidden region and performs a ratchet jump (dashed cyan line) and then continuous through allowed regions. At the end of the loop the colloid is
displaced by a large unit vector along the edge. Fully adiabatic trajectories run through allowed regions only. Adiabatic trajectories therefore can be
sorted into different homotopy classes by the number, sequence and direction (south or north) of the gates they cross. A ratchet trajectory can be
uniquely deformed into an adiabatic trajectory in most of the cases. The ratchet trajectory shown in figure (a) is homotopic to an adiabatic trajectory
passing through 3 x 2 x 4 gates. (c) An example of the allowed and forbidden regions for a particular symmetric edge pattern. The border between
allowed and forbidden regions are the fences in A. Edge fences make a U-turn when they reach the edge.
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system using Brownian dynamics simulations. Details of the
simulation are provided in the Appendix.

The external field He(t) is varied on the surface of a sphere
that we call the control space C (see Fig. 1b). We perform
periodic modulation loops L of the external field in control
space to drive the system. Special modulation loops in control
space induce colloidal motion in action space in the bulk of
both square patterns and at the edge between them.

In ref. 3-5 we demonstrated how the bulk transport of colloidal
particles above magnetic lattices with different symmetries is
topologically protected. We summarize here the main aspects
of the transport in square lattices and refer the reader to ref. 4
and 5 for a complete description. For each lattice symmetry
there exist special modulation loops of He in C that induce
transport of colloids in .A. These loops share a common feature,
they wind around special objects in C.* In the simplest case, a
square lattice, the control space is characterized by just four
“fence” points on the equator lying along the directions of the
smallest reciprocal lattice vectors,” see Fig. 1b. A modulation
loop encircling one of these points (qy, ,, —q1, —(_) in C in the
mathematical positive sense transports the colloids in A one
unit cell along one of the four possible directions of the square
lattice —a,, a;, a,, —a;. We call a modulation loop encircling
one of the fence points a fundamental loop. Each of these
fundamental loops induces adiabatic transport in the sense
that the colloidal particle follows a minimum of the colloidal
potential at any time. Hence, the position of the particle in .4
parametrically depends on the position of the loop in C. All
modulation loops discussed in what follows can be viewed as
concatenations of fundamental loops. A summary of such loops
is given in Fig. 2.

Action space can always be split into allowed and forbidden
regions.®> Any point inside the allowed (forbidden) regions can
be rendered into a minimum (saddle point) of the potential with
a suitable choice of the external field. The allowed and forbidden
regions in square patterns form another checker square pattern
turned by 45 degrees with respect to the magnetization pattern.”
The allowed squares are centered above the domains of the
pattern and the forbidden regions are centered above the
domain wall crossings, see Fig. 1a. The allowed regions can be
further split into south and north (Fig. 1). The colloidal particle
is located in the allowed region north (south) when the external
field points into the northern (southern) hemisphere.

Two adjacent allowed regions in .4 meet at one point that we
refer to as the gate (Fig. 1a). In control space the gates are
segments of the equator joining two consecutive fence points.
When the external field passes a gate in control space then the
particle moves through the corresponding gate in action space.
A modulation loop winding around a fence point passes two
gates and the resulting transport in action space is a zig-zag
move through both gates with the zig and zag at 45 degrees to
the unit vectors of the pattern (Fig. 1a). An example of such
loops in A and C is schematically shown in Fig. 1 panels (a) and
(b), respectively. Colloidal particles can be adiabatically moved
into the positive a;-direction either in a zig-zag or in a zag-zig
way avoiding a neighboring forbidden region on different sides
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(right respectively left) by a counterclockwise winding of the
control loop L, around the g, fence point of control space, and
into the same positive a;-direction by a clockwise winding
L_q,” ! around the —q, fence. Both fundamental moves are
topologically distinct mirror images of each other £, = 02(Lq, ")
since they wind around different fence points. Also the resulting
trajectories in A are topologically distinct since they pass the
forbidden region in action space on different sides they cannot
be continuously deformed into each other. Here g; is the mirror
reflection a; —» —a; (and hence q; — —q;,). The mirror image of the
loop Ly, = 02(Lq, ') is equal to its time reversed loop around the
same fence point ;. The bulk concept of allowed and forbidden
regions as well as the concept of gates can be generalized to the
region of the edge. Here the allowed and forbidden regions become
distorted and the number of gates might be different from the bulk
depending on the fine details of the edge. An example of the
allowed and forbidden regions close to the edge is shown in Fig. 1c.

3 Edge transport with cyclotron
control loops

In the bulk of a metal electrons perform cyclotron orbits if they
are exposed to a constant magnetic field. These cyclotron orbits
are loops enclosing multiples of flux quanta. In analogy to such
electrons we call a modulation loop in C a cyclotron modulation
loop if the colloids in the bulk of A perform a loop encircling
an integer number of forbidden regions (see Fig. 2). Combining
the fundamental bulk transport modes we may construct
cyclotron orbits of square side length na, n = 1, 2, 3,... of a
paramagnetic particle above the bulk of a square lattice. The
corresponding cyclotron control loop in C consists of four
connected parts. Each of the four parts of the loop winds n
times around a fence point of C, and therefore transports a
particle 7 unit cells along one of the lattice vectors in A. There
are various types of cyclotron loops. A symmetric cyclotron loop
(Fig. 2) Loyes = Lq, "L_q, "Ly, "Ly, ™" is a loop where the
mirror image of the endlessly repeated loop mlgrlC L¢yq s coincides

o0
yelys®

with the time reversed endless loop, ie., 0> (5?:Cyc1,s) =Lc
We also work with chiral cyclotron loops Lcyclchiral =
Lq,"Lq,"Lq,"Lq, ™" (see Fig. 2) for which the mirror image of
the endless repeated loop differs from the time reversed
endless loop.

Besides the symmetry of the modulation loop we also must
consider the symmetry of the pattern. There are patterns with
mirror symmetry along a plane perpendicular to the edge. We
refer to these patterns as symmetric patterns. We distinguish
non alternating mirror planes which run across equivalent
square domains of the same magnetization in the large and
small lattice (see Fig. 2) from alternating mirror planes that run
across squares of opposite magnetization on the large and
small lattice (Fig. 2). Both types of mirror planes cover equiva-
lent squares on the smaller lattice of only one magnetization
such that there are no common mirror planes on the squares
of the oppositely magnetized squares in the smaller lattice.
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all loops in C are concatenations of the fundamental L
loops Lq1,Lq2,L-q1,L-q2 and their inverses %

a cyclotron loop

is a loop Leycpiron© C that induces cC > cA
a closed loop L,CA forbidden re

that encircles at least one forbidden region

a palindrome loop
is a loop in C invariant cC
under time reversal Lp,=Lp, !

symmetric pattern

alternating mirror plane

no common mifror plane

e
X o Yommon mirrorplane
188884
palindrome loop with reversal point on large lattice pattern | edge transport/ character
start of loop on non-alternating mirror symmetry plane |symmetric no / adiabatic
symmetric start of loop on alternating mirror symmetry plane symmetric no / ratchet
n even chiral |sometimes /adiabatic or ratchet
chiral any no / adiabatic
start of loop on non-alternating mirror symmetry plane [symmetric no / ratchet
n odd [symmetric start of loop on alternating mirror symmetry plane symmetric no / adiabatic
chiral [sometimes / adiabatic or ratchet
chiral any yes / ratchet
palindrome loop with reversal point on small lattice pattern | edge transport/ character
any any no/adiabatic

Fig. 2 Explanation of the various types of loops in control space, of the types of patterns and a table of resulting edge transport in action space A.

When the symmetry planes of the small and large lattices do The symmetries of the modulation loops and of the pattern
not match we call the pattern a chiral pattern. One chiral are crucial for understanding the transport of colloids at the
pattern is depicted in Fig. 2. edge of both lattices. Combinations of different symmetries
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cause a rich variety of transport phenomena which we have
summarized in the table at the bottom of Fig. 2.

Let us start with a symmetric cyclotron loop. In Fig. 3b we
show a Lcyes(n = 2) in C. The corresponding colloidal trajec-
tory in A is depicted in Fig. 3a. Colloidal particles above the
bulk of the large square pattern perform closed cyclotron orbits
of the imposed side length (n = 2 in this example). Control
space is the same for both, the large and the rescaled small
pattern. Therefore, the cyclotron modulation loop also winds
around the fence points in C of the rescaled pattern. Hence, the
colloids above the rescaled square pattern perform a rescaled
cyclotron orbit. The radius of the orbit simply adjusts to the
new scale of the pattern. Cyclotron orbits that cut through the
edge have a large radius on the large pattern and a small radius
on the small pattern. As a result, the starting and the ending
point of the orbit is shifted by a lattice vector along the edge of
the pattern. If we start on the large pattern side of the edge,
then we end on the large pattern side but displaced by a large
pattern unit vector from the starting point. Hence a particle
near the edge driven with a 2-cyclotron-loop Lcy.s performs
an open trajectory along the edge, while the bulk-particles
perform closed cyclotron orbits (see Fig. 3a and the video clip
Adfigure3.M4V).

We have shown in ref. 4 that the bulk transport is entirely
adiabatic, i.e. the particle sits during the entire modulation
loop in a potential minimum that is translated in action space.
Note that our system is non-ergodic in the sense that when there
are two minima the relaxation from the metastable to the ground
state minimum is suppressed because the activation energy is
large compared to the thermal energy. Adiabatic driving thus
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means driving the system slower than all but these suppressed
relaxation processes. Experimentally, we can show the adiabati-
city or non-adiabaticity by using palindrome cyclotron control
loops Lpy = Ecyclﬁcycfl where an initial cyclotron control loop
is followed by its time reversed loop. A palindrome loop is a loop
that is invariant under time reversal (see Fig. 2). If we infinitely
repeat a palindrome loop L£p;; we still are able to indentify the
reversal points where Lc¢yq and Ecycl‘l are concatenated. The
positions in A of the reversal points are important for the edge
transport and different reversal points are depicted in Fig. 2. The
time reversed loop Ecycfl must undo all the effects of the initial
loop Ly if the transport is adiabatic. Since the bulk transport is
entirely adiabatic® the adiabaticity or non-adiabaticity of the
edge transport is decided during the penetration of the edge.
The smaller lattice has four times the density of minima of the
total magnetic potential than the larger lattice, and each large unit
cell at the edge has two smaller neighboring unit cells of the smaller
lattice. Hence, in a generic situation only one of the minima of the
two smaller primitive unit cells can be transferred adiabatically into
the minimum of the large pattern when crossing the edge. The other
minimum must be annihilated by a saddle point of one of the
smaller primitive unit cells to create a minima distribution above the
large primitive unit cell with half the amount of minima, maxima
and saddle points than the two smaller primitive unit cells. A particle
transported via the annihilating small unit cell minimum must
therefore jump along the path of steepest descent toward the
minimum of the large primitive unit cell. This is a ratchet jump
and it occurs generically when exiting the smaller lattice toward the
larger lattice. Only for some particular edge patterns there exists also
a jump when crossing the edge from the large to the small lattice.

Fig. 3 (a) Experimentally determined bulk cyclotron orbit and penetrating edge spiral path of two colloidal particles on the square pattern in action

space A (the pattern is overlayed to the microscope image since it can be visualized only with very low contrast) for (b) the symmetric cyclotron orbit
Lcyes(n = 2) in C. The fundamental loops each of which is repeated twice are shown in colors corresponding to the segments in (a). Fundamental loops
start and end in the south where they are concatenated to the next fundamental loop. Fence points (encircled spheres) are shown in equivalent colors.
The edge current surrounds two corners of the pattern. Scale bar is 14 pm. A video clip of the motion of the paramagnetic colloidal particles is provided in
Adfigure3.M4V.
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Fig. 4 (a) Experimental trajectories of paramagnets on a pattern subject to a symmetric palindrome cyclotron control loop that reverses after the blue
and cyan loop inside the small lattice. Both bulk and edge transport are adiabatic, however the bulk trajectory closes after half of the palindrome loop,
while the edge trajectory reverses course at two different points. Scale bar is 14 pm. (b) Schematic of the symmetric palindrome cyclotron control loop in
control space. Video clips of the motion of the paramagnetic colloidal particles are provided in Adfigure4_3.M4V and Adfigure4_2.M4V.

Entry and exit of the smaller lattice are equivalent when using a
chiral cyclotron loop Ly ahirat that uses a time reversed fundamental
entry loop as exit loop. However, if we drive the motion with a
palindrome loop it matters whether the point of time reversal lies
within the small or within the large lattice. If the point of return lies
within the small lattice then there will be no transport over a period
because the entry into the small lattice was adiabatic and the particle
will reverse in the small lattice on the same path and therefore find
the adiabatic exit. The motion is adiabatic upon entry and exit and
hence we have no displacement of the particle. In Fig. 4 we show
such adiabatic path for a symmetric palindrome cyclotron control
loop of side length 7 =2 and n = 3. In both cases the bulk trajectories
of the time reversed loop just follow the forward path but in the
opposite direction. In the bulk the two reversal points between Lcyq
and Lcyq ™! coincide such that already the first cyclotron loop closes
the bulk trajectory. In contrast, at the edge half of the trajectory is an
open path with two distinct ends that is reversed in the second half
of the modulation loop. On the other hand, if the point of time
reversal lies within the large lattice there can be transport in the
edge, depending on the edge and loop symmetry. This is discussed
in the next section.

The edge transport cannot generically be adiabatic: if the
transport were entirely adiabatic then for a cyclotron control
loop of side length n that enters and exits the smaller lattice on
equivalent paths one would expect the displacement to be na/2 =
na — na/2, i.e. n-times the difference of the large and small unit
vector along the edge. The displacement however, has to be an
integer multiple of the large lattice constant a. The edge trans-
port can therefore only be adiabatic for n even and must be of
the ratchet type for such cyclotron control loops with n odd.

4 Edge transport with palindrome
cyclotron control loops on symmetric
patterns

Let us first consider patterns with mirror symmetry along a
plane perpendicular to the edge (see Fig. 2). Due to their

Soft Matter

symmetry, symmetric loops enter the small lattice on either
non-alternating or on alternating mirror planes depending on
whether the fundamental loops used for the symmetric loop
start and end on squares having the magnetization of the
mirror planes or not. On a non-alternating mirror plane the
zig-zag path can penetrate into the small lattice without dis-
placement along the edge. In contrast, on an alternating mirror
plane the zig-zag path must leave the alternating mirror plane
upon entry into the smaller lattice to a small lattice mirror
plane that is not a mirror plane of the large lattice and will be
displaced along the edge by a/4. This causes odd and even
symmetric loops to behave the same way as chiral loops when
the fundamental loops start and end on squares having the
magnetization of the non-alternating mirror planes. If the
fundamental loops however start on the squares with alternating
mirror symmetry then symmetric palindrome loops behave
opposite to the chiral palindrome loops and will be adiabatic
when 7 is odd and of the ratchet type for n even Fig. 5.
Symmetric even loops cause cyclotron orbits in the bulk that
are symmetric around a line of symmetry covering squares of
the same magnetization as the start of the loop. The edge is
symmetric around only one type of smaller squares in the small
lattice. Whenever the small squares of the line of symmetry
match the magnetization of the start square, the transport of
the symmetric loops is adiabatic, whenever they cover different
types of small squares the transport is of the ratchet type. This
result is a direct consequence of coupling a large primitive unit
cell of the large lattice with two primitive unit cells of the
smaller cell. In Fig. 5 and in the video clips Adfigure5_2.M4V
and Adfigure5_3.M4V we show simulated trajectories of “bulk
particles” and particles near a symmetric edge with mirror
planes running across the white squares of the small lattice.
The edge runs in the a,-direction and the colloids are subject to
a mirror symmetric palindrome control loop Lpys of side
length na with fundamental loops starting and ending on black
squares. Trajectories of bulk particles are closed in both lattices
no matter whether n is odd or even. At the edge the trajectories
follow the reversed path for n odd but have regions where the

This journal is © The Royal Society of Chemistry 2019
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non alternating mirror plane
alternating mirror plane

Fig. 5 Trajectories of paramagnets obtained by Brownian Dynamics simulations on an symmetric pattern subject to symmetric palindrome cyclotron
control loops. Here we show the situation when the fundamental loops building up the control loop start and end in the south of control space (on a
black square in action space). Even loops cause ratchet motion with hysteresis and odd loops are fully adiabatic in this case. The loops start and end on
squares that have the opposite magnetization of the non-alternating mirror planes. Video clips of the simulations of the paramagnetic colloidal particles

are provided in Adfigure5_3.M4V and Adfigure5_2.M4V.

reverse path is different from the initial path when n is even.
Ratchet jumps at the forward exit from the small lattice are
compensated by mirror symmetric ratchet jumps at the reverse
exit. We may however use odd chiral palindrome control loops
Lpaichiral (7 = 0dd) where both ratchet jumps do not compensate
but cause a net transport along the edge. Experimental trajec-
tories together with the chiral palindrome cyclotron loop are
shown in Fig. 8 and in the video clips Adfigure6_1.MAV-
Adfigure6_4.MAV.

5 Edge transport with palindrome
cyclotron control loops on chiral
patterns

Instead of breaking the mirror symmetry ¢, by driving with a
chiral palindrome loop one can also produce chiral patterns
(see an example of a chiral pattern in Fig. 2). Each of the two
square lattices has mirror reflection planes that run perpendi-
cular to the edge. If the mirror planes of one lattice do not
coincide with the mirror planes of the other lattice we refer to
the pattern as chiral. The behavior of particles near the edge is
the same as for non-chiral patterns when we use the chiral

This journal is © The Royal Society of Chemistry 2019

palindrome loops. This is caused by the fact that one uses only
one type of fundamental control loop and its fundamental time
reversed loop moving the particles perpendicular to the edge.
For an even chiral palindrome cyclotron loop, the motion upon
entering the small lattice is on an adiabatic path. The exit path
is parallel to the entry path. Both paths are separated by one
unit vector of the large lattice and are thus equivalent. It follows
that the exit is also adiabatic. The corresponding odd loops
cannot adiabatically connect the second minimum to the large
lattice with the same loop segment. Hence, the exit to the large
lattice is of the ratchet type. Both exits, that of the forward
cyclotron orbit and the time reverse exit, are again separated by
a unit vector of the large lattice which makes them equivalent.
Therefore both ratchet jumps are in the same direction and
result in net edge transport.

If we drive the motion with a symmetric palindrome loop
and the point of reversal lies within the large lattice then the
exit path of the small lattice is a mirror symmetric path to the
entry path. Because the edge lacks mirror symmetry the exit can
be adiabatic or of the ratchet type for any n odd or even. If it is
adiabatic then when the control loop reverses with the particle
in the large lattice the reversed path must be adiabatic as well at
both entry and exit and the entire loop will cause a closed

Soft Matter
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Fig. 6 (a) Experimentally determined bulk chiral palindrome closed orbit and edge path of two colloidal particles on the square pattern in action space A
for (b) the chiral palindrome orbit Lpuichir(7) in C. The fundamental loops are shown in colors corresponding to the segments in (a). Fence points
(encircled spheres) are shown in equivalent colors. The edge paths are closed for n even and open penetrating spirals for n odd. The adiabatic entry (dark
blue) and the ratchet exit (blue of step 8) path differ and enclose a hysteresis (red). The same is true for steps 6 and step 3 of the palindrome loop. Scale

bar is 14 pm. Video clips of the motion of the paramagnetic colloidal particles are provided in Adfigure6_1.M4V-Adfigure6_4.M4V.

trajectory with no transport. If on the other hand the exit is of
the ratchet type we can use the same argument starting with the
time reversed loop to find that then also the second exit must
be of the ratchet type. The direction of the ratchet jumps
however must not be, but can be, mirror images of each other
because the edge is chiral. If we have a patch of the smaller
lattice within the larger lattice there is an edge at the bottom of
the patch and an opposite edge on the top of the patch. If we
have edge transport on one chiral edge using a symmetric
palindrome loop then there cannot be edge transport on the
opposite edge because the reverse points of the same palin-
drome loop lie in large lattice for the first edge and in the small

lattice for the opposite edge. In Fig. 7 and in the video clips
Adfigure7_2.MAV-Adfigure7_3.M4V we show the motion of col-
loidal particles subject to a symmetric palindrome cyclotron
modulation loop, where the transport is of the ratchet type with
net transport for n = 2 (i.e. even) and of the adiabatic closed
non-transport type for n = 3 (ie.,, odd). Note that for this
particular example the fundamental modulation loops start,
end, and are concatenated in the north of control space.

The richness of edge transport phenomena and its connec-
tion to the symmetry of the pattern and the palindrome loops is
shown in Fig. 2, where we summarize the resulting transport of
different palindrome loops on chiral and symmetric patterns.

Fig. 7 (a) Experimentally determined bulk symmetric palindrome closed orbit and edge path of two colloidal particles on the square pattern in action

space A for (b) the symmetric palindrome orbit Lp, () in C. The fundamental loops are shown in colors corresponding to the segments in A. Fence
points (encircled spheres) are shown in equivalent colors. The edge paths are closed for n odd and open penetrating spirals for n even. Fundamental
loops start, end and are concatenated in the north in contrast to the examples shown in Fig. 3—6. Scale bar is 14 um. Video clips of the motion of the
paramagnetic colloidal particles are provided in Adfigure7_2.M4V-Adfigure7_3.M4V.
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6 Non-generic edges

The patterns analyzed here consist of two square lattices joined
at an edge. There exists three degrees of freedom when design-
ing such patterns. Two of them are the positions at which we
truncate each lattice in the direction perpendicular to the edge.
The third one is a relative shift between both lattices in the
direction parallel to the edge. The full parameter space is there-
fore three dimensional. The edge motion we have described in
the preceding sections holds for most of this parameter space. In
some regions of parameter space we can also suppress any
adiabatic transport of particles from the larger lattice to the
smaller. In such cases, Brownian dynamics simulation show that
the generic situation is that ratchet jumps do not occur in the
direction of the smaller lattice but do occur from the smaller
toward the larger lattice. These ratchets are probably homotopic
to some bulk adiabatic motion® of a nearby pattern.

7 Topological nature of the edge
states

The topological character of the bulk transport has been
explained in detail in reference.” It is due to homotopy classes
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of loops in C. Fundamental loops like £_,, ! describe an entire
homotopy class of loops, all of them encircling the —q, bulk
fence point. Deforming this control loop without changing the
winding number around the fence point leads to the same net
transport by a unit vector —a;. The transport is robust with
respect to a deformation of the control loop. The four winding
numbers of a control loop around the four bulk fence points
completely classify the bulk transport. The transport through
the edge is also classified by these bulk winding numbers,
however new features in control space such as edge fence lines
and edge bifurcation points arise when we fully classify the
topology of the edge transport.

In Fig. 8 we show the transport in both bulk lattices as well
as the edge transport caused by four chiral palindrome control
loops Lpaichiri(n = 3), i=1,2,3,4 that all fall into the same
bulk classification. While the bulk transport of all four loops is
topologically equivalent, the adiabatic entry of a colloidal particle
into the small lattice through the edge is not the same four all four
loops. The edge transport of Lpychir1 (7 = 3) and Lpy chir2 (1 = 3)
differs from the edge transport of Lpachir3(n=3) and
Lpaichira(n = 3) because the blue sub-loops of Lpchir(n = 3)
wind (do not wind) around a particular edge bifurcation point
marked by an red arrow. Both classes of chiral palindrome
loops cause edge transport into opposite directions. Apart from
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Fig. 8 Four simulated bulk chiral palindrome closed orbits and edge paths of the colloidal particles on the square pattern in action space A for four chiral
palindrome loops Lpaichiri(n) i =1, 2, 3, 4 in C. The four loops are topologically equivalent concerning the bulk transport but fall into different
topological classes concerning the edge transport. The fundamental control loops in C are shown in colors corresponding to the segments A. Bulk fence
points (yellow and blue spheres in C) are shown in equivalent colors. Additionally we have plotted the edge fence line and edge bifurcation points in
control space as well as in the blow up of the action space showing also the allowed and forbidden regions. The edge paths are open penetrating spirals
like in the experiments of Fig. 6. Lpachir,1(3) and Lpaichir2(3) transport edge particles to the left while Lpaichir,3(3) and Lpaichir4(3) transport edge particles
toward the right because the blue part of the control loop winds (does not wind) around the edge bifurcation point marked by a red arrow. A Video clip of
the motion of the simulations is provided in Adfigure8.M4V.
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the winding numbers around the bulk fence points, additional
winding numbers around edge bifurcation points are required
to fully classify the edge transport. The edge transport, how-
ever, is still topological, as deformations like the deformation
of  Lpachir,1 (1 = 3) = Lpaichira(n =3) or  Lpajchirz(n = 3) —
Lpaichir4(n = 3) that do not change this enlarged set of winding
numbers does neither change the bulk nor the edge transport.

Bulk transport was always adiabatic because there always is
a unique minimum per unit cell. When we exit the small lattice
there are two minima in two different small unit cells adjacent
to the large unit cell on the other side of the edge. One
minimum must annihilate with a saddle point of the potential
as we exit the small lattice. This annihilation occurs when the
dark blue sub-loop in C passes through the yellow edge fence
lines in C that connect the bulk fence points to the edge
bifurcation points. The colloid performs an irreversible ratchet
jump when it resides in the annihilating minimum of the small
lattice but moves adiabatically when residing in the persisting
minimum. The two loops Lpyichir,1 (7 = 3) and Lpyi chir2(n = 3)
cause two irreversible ratchet jumps toward the left, one in the
forward half loop and one in the backward half, while for
Lpaichir3(n =3) and Lpychira(n = 3) the ratchet jumps are
toward the right.

Edge fence lines and edge bifurcation points depend on the
exact structure of the edge. A loop that passes an edge bifurca-
tion point of one particular pattern on one side might pass the
edge bifurcation point of another pattern on the other side. The
complete characterization of all possibilities is a high dimen-
sional problem. In this paper we have just considered the edge
transport properties that arise from symmetry arguments.

8 Discussion

In previous work,® we have shown that edge transport between
topologically distinct lattices occurs in the form of skipped
orbits."”° Like the penetrating spiral orbits shown here, both
forms of edge transport are truly topological and the transport
is determined and protected by topological invariants. Here,
the topological invariants are the winding numbers of the
modulation loops around the fence points in control space.
Skipped orbits however differ from the penetrating spirals in
two ways: first, skipped orbits propagate on one side of the edge
only and do not penetrate the other topologically distinct
lattice. Second, skipped orbits fail to perform a displacement
command by one unit vector of the modulation loop, that is
performed by colloidal particles in the bulk. That is, they really
skip one command. Penetrating spirals perform each com-
mand of the modulation loop either in the proper way of the
lattice currently occupied or in a particular edge penetrating
move that may or may not differ from the corresponding
bulk motion. Skipped orbits of colloids are the analogue to
topologically protected edge waves. Those edge waves due to
the topological contrast between two lattices obey a bulk-
boundary correspondence. One can predict the number of
skipped orbits from the bulk orbits using the difference in
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the number of the fence points of both lattices encircled by a
particular control loop in control space. Such prediction how-
ever seems to be absent for the penetrating spirals propagating
at the edge between topologically equivalent lattices since both
lattices share the same bulk control space.

It is clear that none of the edge modes discussed here occur
along edges of matching square lattices with equal lattice
constants. In such cases the edges cannot be distinguished
from the bulk because if we perfectly match the connection of
both lattices the pattern cannot be distinguished from a single
lattice. The non-existence of edge states is the translation of
the non-existence of chiral and propagating edge waves
between topologically equivalent wave supporting lattices.
The difference of Chern numbers and of winding numbers of
evolution operators between topologically equivalent wave
systems vanishes and so does the number of edge waves. We
have performed also experiments on edge transport between
lattices with different ratios of unit cell sizes. When driving a
system with cyclotron control loops for ratios different from
unity and for any direction of the edge we find propagating
chiral edge modes. It is therefore clear that a bulk-boundary
correspondence cannot hold for particle systems at edges of
differently sized lattices. The failure of the bulk-boundary
correspondence has been reported also in non-Hermitian
Hamiltonian systems due to the presence of exceptional points
for which the energy levels are complex and degenerated.”® Yao
and Wang>* and Kunst et al.>® reported on a generalization of
the bulk-boundary correspondence that includes non-
Hermitian Hamiltonians and Candido et al.>® have shown the
bulk boundary correspondence to fail for chiral non-Hermitian
Hamiltonians. Our example however proves the impossibility of
a bulk-boundary correspondence principle for particle systems
between topologically equivalent lattices of different scale. It
might also be possible that a break down of the bulk-boundary
correspondence occurs for wave systems at edges between
differently sized unit cells.
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Appendix

We use Brownian dynamics simulations to study the motion of
isolated point dipoles moving in the total colloidal potential
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given by
V (x4, Hext(2)) o< —Hext(2) - Hp(x.4), (1)
where He(t) is the external field at time ¢, and Hp(x4) is the

magnetic field created by the pattern at position x4 in A. The
pattern field is calculated as

/ X4 — X ' + ze; /
) = [y DATXOR 0 g
4n|(xq4 —x4") + ze:|

where M,(x4) is the magnetization pattern and z ~ 0.2a is the
elevation of the particles above the pattern with large lattice
constant a. The equation of motion in the overdamped limit is

&a(t) = =VaV (x4, Heu (1)) + 1), (3)

where ¢ is the friction coefficient, and # is a Gaussian random
force with a variance given by the fluctuation-dissipation
theorem. The equation of motion is integrated in time with a
standard Euler algorithm. We use a time step 7/dt ~ 2 x 10°
with T the period of a modulation loop L.

From eqn (1) it follows that a point x 4 is made stationary by
an external field

Hix (x4) oc £ Hp(x4) x 82Hp (x4) 4)

The allowed (forbidden) regions are the regions in A of positive
(negative) determinant

[H (x4) - VAV _aHp (x| (5)

where the partial derivatives are taken along arbitrarily chosen
coordinates in .A.
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