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A system of hard rods confined into a pore with slit geometry �two parallel planar substrates� is studied
theoretically in the regime of high packing fraction. In this regime the bulk system exhibits a nematic phase as
well as a smectic-A �spatially layered� phase. When the system is confined, strong commensuration effects
between the layer spacing and the pore width bring about a rich phenomenology, with a phase diagram
showing layering and capillary transitions. The latter include capillary smectization transitions whereby a
confined smectic phase occurs at conditions of saturation different from those of the corresponding bulk fluid.
These transitions are seen to be intimately connected with layering transitions involving discontinuous changes
in the number of layers inside the pore. This rich phenomenology is obtained by use of a sophisticated
density-functional, Onsager-theory-based approach, especially suited to deal with strongly inhomogeneous
fluids. The theory allows for a unified description of ordering and phase behavior of the fluid in confined
geometry, and permits us to correlate the above behavior with the wetting properties of the fluid on a single
substrate.

DOI: 10.1103/PhysRevE.74.011709 PACS number�s�: 61.30.Hn, 64.70.Md, 68.15.�e

I. INTRODUCTION

Surface and interfacial properties of liquid crystals have
attracted considerable interest since these materials were dis-
covered �1,2�. From a practical or technological point of
view, surface properties and surface phase transitions are of
crucial importance, since they in part determine the macro-
scopic behavior of the materials and, as a consequence, their
suitability for practical uses, the more extended being the
manufacture of display devices �3�. From a purely theoretical
point of view liquid crystals and, particularly, liquid crystals
in a confined geometry, pose formidable challenges because
of their structural complexity �molecular interactions are
largely unknown� and orientational degrees of freedom �4�.
The latter, which are coupled to translational degrees of free-
dom, are the origin of their peculiar properties, midway be-
tween the isotropic liquid and the crystal but, at the same
time, are the origin of the great difficulties involved in the
formulation of theoretical models. As a consequence, micro-
scopic models of liquid crystals and their surface properties
must still be considered as toy models. Nevertheless, these
are relevant because their simplified nature forces us to focus
attention on the relevant aspects that account, at least quali-
tatively, for the particular phenomenology of liquid crystals.
These aspects include particle elongation, particle overall
shape, and so on.

When a liquid crystal is placed in front of a surface, a
competition between the intrinsic �liquid crystal particles�
and extrinsic �liquid crystal particles and substrate� interac-
tions is established. The result is, in general, a very rich
surface phenomenology, which includes surface phase tran-

sitions such as wetting, anchoring, and coupling between the
two �1�. Confinement of the material into a narrow pore
causes remarkable capillary effects �5�, which find interest-
ing applications. Most theoretical �6� and simulation �7–9�
studies have focused on nematic fluids, while smectic films
or films with presmectic order have received little theoretical
attention �10–12�, while experimental studies are scarce
�13–16�. The effect of confinement on smectic films is even
more dramatic than in nematic films because of the commen-
suration effects between the characteristic length scale �par-
ticle elongation� of the fluid and the imposed length scale
�pore width�. Commensuration effects are expected to be sig-
nificant in cases where the system is in a thermodynamic
state close to that which would correspond to a spatially
ordered �smectic� phase in bulk. The result is the existence of
remarkable capillary effects in liquid crystals confined in
narrow pores, conceptually similar to well-known capillary
effects in confined simple liquids, such as the phenomenon
of capillary condensation �17� and layering and capillary
crystallization �18,19�.

The first theoretical investigations on confined liquid
crystals were conducted by Sheng �20�, and Poniewierki and
Sluckin �21� who predicted what can be termed capillary
nematization. They suggested that the nematic-isotropic tran-
sition temperature of a liquid crystal confined between two
parallel walls may be larger or smaller than the correspond-
ing value for the bulk nematic-isotropic transition as the dis-
tance between the walls decreases, the wetting conditions
prevailing at the walls being the relevant factor. The pre-
dicted capillary nematization has recently been observed, us-
ing atomic force microscopy, by Kocevar et al. �22� on a
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thermotropic nematic liquid crystal; the associated first-order
transition line, terminated in a critical point, was also ob-
served. A microscopic toy model that accounts for this phe-
nomenology has recently been presented �23�. In this model
liquid crystals particles are represented by hard spherocylin-
ders while the effects of the pore walls are introduced by
means of an external potential acting on each spherocylinder.
An extended Onsager density-functional theory is then used
to obtain the thermodynamic properties of the system.

Our main goal in this paper is to extend our previous
study �24� to include the effect of particle elongation. In
previous work we presented an extension of the molecular
toy model mentioned above to account for capillary effects
in a liquid crystal confined into a narrow slitlike pore, an
extension which is particularly suitable for dealing with the
strong oscillatory behavior in the local density characteristic
of positionally ordered phases, such as the smectic phase
and/or confined liquid crystals. For some particular aspect
ratio of the particles, we found interesting commensuration
effects and a complete phase diagram including both layering
and capillary smectization lines; these results are conceptu-
ally similar to those found in other physical systems �25–27�,
but our work somehow permitted a unified description of all
phenomenologies. In the present paper we analyze how these
effects change as the particle shape is varied. The rest of the
paper is arranged as follows. In the following section, Sec. II,
the model is summarized. In Sec. III we present the results,
paying particular attention to the role of the particle aspect
ratio in the behavior of the confined fluid. Finally, some con-
clusions are drawn in Sec. IV. Some details of the density
functional and its numerical implementation are given in the
Appendix.

II. THEORETICAL MODEL

Virtually all theoretical treatments of fluids made of an-
isotropic hard-core particles start from Onsager theory �28�
or variations. As applied to a system of hard spherocylinders
�HSCs�, Onsager theory predicts an isotropic to nematic tran-
sition at some particular density, a prediction that becomes
exact in the limit of infinitely long hard rods. The theory is a
second-order virial expansion, hence a density-functional
theory �DFT� �based on the one-particle orientational distri-
bution function�, and has been extended, using the so-called
decoupling approximation �29�, to include higher-order virial
coefficients in an approximate way, allowing for more accu-
rate results to be obtained for realistic molecular models �i.e.,
finite aspect ratio of the particles�.

A few attempts have been made to extend Onsager ideas
to general inhomogeneous systems �see, e.g., Refs. �30–32��
and nonuniform systems �such as the bulk smectic phase� in
particular �33�. In this section we shall summarize the ex-
tended Onsager approximation used in our calculation,
which is appropriate to deal with highly inhomogeneous flu-
ids and has been applied successfully several times �see, e.g.,
Refs. �33,34��. We present only a brief sketch of the theory.
Details on the theory and on the numerical implementation
can be found in the Appendix; further description of the
model can be found elsewhere �33�.

We consider a fluid confined into a slitlike pore, with
confining walls parallel to the xy plane and separated by a
distance H. The normal to the walls is along the z axis. The
free-energy functional F��� is expressed, as usual, as the sum
of ideal Fid��� and excess Fex��� contributions. The ideal part
is exactly given by the following functional:

Fid��� = kT� � drd���r,���ln��3��r,��� − 1� , �1�

where ��r ,�� is the one-particle distribution function, which
gives the mean local density of uniaxial particles at r and
with orientation of their symmetry axes given by �
��� ,��, k is the Boltzmann’s constant, T is the temperature,
and � is the thermal wavelength. The excess part is written
as

Fex��� =� dr
�ex

PHE��̄�r��
�̄PHE�r�

� d���r,��

�� � dr�d����r�,���Vexc�r − r�,�,��� , �2�

where �̄�r� and �̄PHE�r� are averaged densities, details of
which are given in the Appendix. This can also be viewed as
a particular implementation of density-functional theory �due
to Somoza and Tarazona �34�� that generalizes Parsons-Lee
theory to highly nonuniform liquid-crystalline phases. The
theory is based on the weighted-density approximation
�WDA� for simple fluids made of isotropic particles �35�.
The one-particle distribution function can be written as
��r ,�����z ,��=��z�f�z ,�� where ��z�, the density pro-
file, is now the mean number of particles at z, regardless of
their orientation, and f�z ,�� is the orientational distribution
function. Note that we have made use of the particular sym-
metry of our system since only the spatial dependence on z,
the distance perpendicular to the pore wall, is relevant.

For axially symmetric particles �with spatial dependence
only along the z direction� the following parametrization of
the orientational distribution function is useful:

f�z,�� =
e��z�P2�cos ��

� d�e��z�P2�cos ��

. �3�

The orientational order parameter � is defined in the usual
manner:

��z� =� d�P2�cos ��f�z,�� . �4�

It turns out that the fluid can be uniquely described by the
density ��z� and order-parameter ��z� profiles �see the Ap-
pendix�. In order to end the description of our density-
functional model we have to specify the extrinsic contribu-
tion to the free energy, i.e., the contribution coming from the
interaction of the liquid crystal molecules with the pore
walls. This is given by
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Fw��� =� � drd�̂��r,�̂�Vw�z� , �5�

where the external potential Vw�z� is such that

e−	Vw�z� = 
�z� + 
�H − z� �6�

where 	=1/kT, and 
�x� is the Heaviside function. As
shown in Ref. �23� this potential, which represents two hard
walls acting on the centres of mass of the particles, induces
homeotropic alignment in a monolayer of spherocylinders
adsorbed on a single wall. Thus it will induce homeotropic
alignment and therefore a director configuration perpendicu-
lar to the two �identical� walls in the confined system. In
particular, the layers of the confined smectic phase will ar-
range themselves parallel to the walls.

Since we are dealing with a confined systems, the equi-
librium configuration is obtained by minimizing the grand
potential functional, given by

���� = Fid��� + Fex��� + Fw��� − �� � drd�̂��r,�̂� ,

�7�

where � is the chemical potential of the system. For a given
pore width H and chemical potential �, the grand potential
����� ;� ,H� is minimized with respect to ��z� and ��z� us-
ing a standard conjugate-gradient method. Details on this
procedure are given in the Appendix.

III. RESULTS: STRUCTURE AND PHASE DIAGRAMS

In this section we present and describe our results for the
structure �density and orientational distributions� and phase
behavior of the system. We have focused attention on con-
fined hard-spherocylinder systems of length-to-breadth ratios
L /D=3.7, 5, and 6. In the first case, L /D=3.7, the system is
below the bulk isotropic-nematic-smectic-A �INS� triple
point as predicted by the same approximation when applied
to the bulk system, and therefore the nematic phase is not
thermodynamically stable. Although we have not calculated
the precise location of the triple point, the bulk IS transition
takes places at a pressure lower than that corresponding to
the IN bulk transition. The contrary situation holds for
L /D=4, which indicates that 3.7
 �L /D�INS
4. This result
is in agreement with previous calculations of ours based on
the same model �but with a slightly different numerical ap-
proach, see Ref. �33��, and also with computer simulations
�36,37�. Therefore for elongation L /D=3.7, the smectic
phase coexists with the isotropic phase. In the two other
cases considered, L /D=5 and 6, the nematic phase is ther-
modynamically stable, and the smectic phase coexists with
the nematic phase.

In Fig. 1 density profiles of different confined structures
are shown. The profiles result from a minimization of the
density functional with different conditions of chemical po-
tential and pore width �note that in each case only half of the
profile is shown, since the profiles are symmetric with re-
spect to a plane at the center of the pore and parallel to the
walls�. The profile in Fig. 1�a� corresponds to a structure

with no positional order in the central region of the pore; the
orientational profile �not shown� is zero in this region. We
can term this phase “isotropic” �I�, since the central region
exhibits properties of a bulk isotropic phase. The profiles in
Figs. 1�b� and 1�c� correspond to two structures with the
same pore width that coexist in thermodynamic equilibrium
�i.e., equal grand potentials�. No continuous path exists in the
variables �-H �chemical potential–pore width� connecting
these profiles. Since the first has well defined layers, we can
call it confined “smectic” �Sn, meaning that the phase has n
smectic periods, i.e., n+1 smectic layers�. The other profile
�Fig. 1�c�� is also well structured, but both the density and
orientational profiles in the central region of the pore show
damped oscillations; this we call confined “nematic” �N�
phase �in the following, when the distinction between I and
N phases does not need to be made, we will use D to denote
collectively these two “disordered” phases�. However, as
usual in confined fluids, the distinction between confined
nematic, smectic, or even isotropic phases is not clearcut,
and a simple inspection of the profiles may not provide a
definite conclusion as to the nature of the confined phase.
This nature is to be ascribed according to the topology of the
phase diagram. Note that all profiles show strongly varying
peaks next to the walls. The associated oscillations die out
from the wall but, in most instances, they clearly reach the
central region.

Figure 2 shows schematically the phase diagrams ob-
tained for the three particle elongations considered, in the
plane �-H. First-order transition lines are drawn with con-

FIG. 1. Density profiles for the following cases: �a� L /D=3.7,
�=�IS

coex−0.13kT, and H=27.1�L+D�; �b� L /D=6.0, �=�NS
coex

+0.51kT and H=28.2�L+D�; and �c� L /D=6.0, �=�NS
coex+0.51kT

and H=28.2�L+D�. Values for the coexistence chemical potentials
are given in Table I. Profiles in �b� and �c� correspond to two struc-
tures that coexist in thermodynamic equilibrium. Note that the ver-
tical scale is too short to accommodate the density profiles in the
region immediately next to the wall.

CAPILLARY EFFECTS IN A CONFINED SMECTIC¼ PHYSICAL REVIEW E 74, 011709 �2006�

011709-3



tinuous lines, while circles represent critical points. The fig-
ure represents the basic topology of the phase diagrams,
based on real data. The latter have been obtained by minimi-
zation of the density functional and by locating the phase
boundaries in the usual way �i.e., searching for equality of
excess grand potentials of the different phases involved�.
Later we present actual results for particular values of pore
width.

The first apparent difference among these phase diagrams
is that the IN transition line does not appear in the case of
L /D=3.7, consistent with the fact, commented above, that
this system is below the bulk INS triple point and therefore a
direct IS transition takes place with increasing chemical po-
tential. In the two other cases, a capillary nematization line,
corresponding to the IN transition in the confined material, is
present. Confinement promotes nematic order so that for fi-
nite H the IN transition takes place at values of the chemical
potential different from that of the bulk IN transition. The
�IN�H� transition line is monotonically increasing in both
cases: as H increases the nematization line asymptotically
tends to the bulk IN transition so that the nematization line
becomes horizontal for large values of H. This trend is gov-
erned by the �macroscopic� Kelvin equation,

�IN�H� − �IN
coex =

2��WN − �WI�
��N − �I�H

, H → � �8�

which relates the difference in chemical potential between
the capillary nematization line �IN�H� and the bulk value
�IN

coex=�IN�H→�� with the values of the surface tensions of
the wall-nematic interface �WN and wall-isotropic interface
�WI and with the densities of the nematic and isotropic
phases at bulk coexistence, �N and �I, respectively. Since
�N��I always, the fact that the slope d�IN�H� /dH�0, as
seen in the graphs, means that the wall is preferentially wet
by the nematic phase over the isotropic phase, i.e., �WN

�WI. This is actually the case since, in the two cases
L /D=5 and 6, we find that there is complete wetting of the
wall by the nematic phase �31�, so that �WN+�IN=�WI; since
�IN�0 this means �WN
�WI. For narrow enough pores, the
capillary nematization line ends in a critical point below
which no IN transition is found. The existence of the critical
point can be qualitatively understood in terms of how the
order parameter varies in the pore: when H is small enough,
the regions next to each wall where the profile is significant
begin to overlap, making it impossible to distinguish be-
tween isotropic and nematic phases.

Let us now turn to discuss the effect of confinement on
smectic ordering. The value of the chemical potential corre-
sponding to the bulk transition to the smectic phase �from the
isotropic phase in the case L /D=3.7 and from the nematic
phase in the other two cases� is represented in Fig. 2 by
means of a dashed line. Lines representing first-order transi-
tions end in critical points at low values of H and form triple
points at larger values of H. The latter are what we call
smectic pockets. If one of these continuous lines is crossed
along a vertical path by increasing the chemical potential at
constant pore width �dotted vertical arrows in Fig. 2�, the
system undergoes a first-order transition from a disordered
�I or N depending on the value of L /D� phase, where the
number density in the central region of the pore is weakly �or
not at all� structured, to a smectic phase where well-
structured peaks exist throughout the pore. This is a capillary
smectization line. On the other hand, for fixed chemical po-
tential well above the corresponding value for the bulk tran-
sition �DS

coex, the system undergoes a series of first-order lay-
ering transitions as the pore width H is varied and the
boundaries of the pockets are crossed. These are layering
transitions. Note that these transitions can also be obtained
for fixed pore width by varying the chemical potential. Each
pocket is associated with a smectic phase composed of n
layers, and each layering transition involves two structures
with numbers of layers differing by one unit. The above tran-
sitions can be characterized by suitably defined order param-
eters. A standard way to introduce order parameters for an
inhomogeneous fluid confined into a pore is via density and
orientational order adsorption parameters, �� and ��:

����,H� = �
0

H

dz���z;�,H� − �coex���� ,

FIG. 2. Schematic representation of the effect of particle length-
to-breadth ratio L /D on the phase diagram of the confined liquid
crystal. � is the chemical potential and H is the pore width. �a�
L /D=3.7; �b� L /D=5; and �c� L /D=6. Dashed horizontal line in-
dicates bulk transition to smectic phase. Arrows indicate particular
paths in the phase diagram connecting two confined phases �see text
for a detailed discussion�. Labels approximately indicate regions
where confined isotropic �I�, nematic �N�, and smectic �S� phases
are stable. In the latter case the subscript n gives the number of
layers of the smectic structure. Although not apparent in the figure,
the three lines meeting at triple points should do so with different
slopes.
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����,H� = �
0

H

dz��z;�,H� . �9�

First-order phase transitions of the fluid in the pore are asso-
ciated to discontinuous jumps of one �or both� of these pa-
rameters. In Fig. 3 the behavior of the density adsorption ��

as a function of pore width H is plotted for particle elonga-
tion L /D=5. The chemical potential, which is larger than
that at which the bulk transition occurs, was chosen such that
the first layering transitions are missed; for H�19.5d0 a se-
ries of discontinuous changes in �� occur, each correspond-
ing to completion of a new smectic period, i.e., a layering
transition. Here d0 is the bulk smectic period at coexistence.
In this case the discontinuity is negative; we will comment
on this later.

The graph in Fig. 2, which contains the essential results of
this work, shows how two �in principle unrelated� phenom-
ena, i.e., layering and capillary condensation of a spatially
ordered �such as the smectic� phase, are connected: the cap-
illary smectization line, which oscillates as it tends to the
bulk value �DS

coex, shows cusps, actually triple points, for pore
widths H larger than some value, points at which high-order
layering transitions terminate. For narrow pores the transi-
tions associated with the two phenomena are even more in-
timately related, as they merge into a single transition line; as
a consequence, regions of stability of structures that for
wider pores were disconnected now become connected.
These phenomena are associated with the strong commensu-
ration effects arising from the periodicity of the smectic
phase. We now turn to discuss the physical origin of the
various features of these phase diagrams.

IV. CONNECTION TO WETTING BEHAVIOR

In the previous section we have presented the basic fea-
tures of the phase diagrams schematically. These are com-

mon features in all phase diagrams. There are, however, spe-
cific features depending on the length-to-breadth ratio of the
particles. For example, in the case of particles with low as-
pect ratio �L /D=3.7�, the smectic pockets tend to appear at
higher chemical potential as the pore width is increased,
tending to �IS

coex from below and never crossing the line �
=�IS

coex. By contrast, in the other two cases �particles with
larger aspect ratio�, the smectic pockets show a nonmono-
tonic behavior: the capillary smectization line �NS�H� first
occurs above the bulk value �NS

coex, then crosses this value,
and finally tends to it as H→�. In all cases there is a clear
effect on smectization due to confinement.

The asymptotic behavior �when H→�� of these capillary
transition lines can again be rationalized in terms of the wet-
ting properties of the system by means of the Kelvin equa-
tion. In this case we write

��0�H� � �DS�H� − �DS
coex =

2��WS − �WD�
��S − �D�H

,

H → �, D = N or I , �10�

where �S and �D are the number densities of the bulk smectic
and disordered �N or I� phases, respectively. �WD stands for
the wall-nematic or wall-isotropic surface tension �one or the
other is involved depending on the value of L /D�, and �WS is
the wall-smectic surface tension. This equation is modified
when elastic contributions to the smectic phase are taken into
account �25�; we discuss this point later. For the moment, we
use the Kelvin equation to obtain the “average” behavior of
the transition line �DS�H�. The sign of the second term in Eq.
�10� gives the slope with which the capillary transitions tend
to their bulk asymptotic values. Since �S��D this sign is
controlled by the surface tension difference �WS−�WD. The
relevant surface tensions can be calculated consistently
within our DFT theory in semiinfinite geometry, and predic-
tions of the asymptotic behavior can be made.

The calculation of the surface tension �excess grand po-
tential, over bulk value for the same chemical potential and
volume, per unit area� of a WS interface is somewhat prob-
lematic, since we need to place a boundary condition in the
form of a bulk smectic profile at some distance from the wall
and away from it. Ideally this condition should be at infinity
since the elastic stress induced by the boundary condition is
freed very slowly. In practice a collection of systems with
different distances from the wall to the boundary condition
can be set up, the equilibrium structure obtained for each,
and the resulting excess grand potential per unit area mini-
mized with respect to the distance of the boundary condition
from the wall. An alternative approach, which avoids the
need to deal with a boundary condition, is to place the smec-
tic into different slitlike pores of varying width, and mini-
mize the excess grand potential with respect to the width.
The true surface tension �WS is obtained by subtracting the
bulk grand potential from the grand potential of the film,
dividing by a factor 2 and extrapolating to the limit H→�.
To insure bulk conditions at the center of the pore the grand-
potential density and the layer spacing can be monitored and
compared with their corresponding bulk values. The WD in-

FIG. 3. Density adsorption parameter �� as a function of pore
width H for elongation L /D=5 and chemical potential � /kT
=21.70. The inset shows enlarged area. Dotted lines indicate first-
order layering transitions.
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terfaces, by contrast, present no difficulties, and the surface
tension �WD can be obtained in semiinfinite geometry, apply-
ing a uniform boundary condition. The calculation of �DS
�which is not strictly necessary to apply the Kelvin equation,
but is needed to obtain the wetting properties of the film� is,
again, not easy. The reason is that it is not clear how to locate
the Gibbs dividing surface and therefore there is some am-
biguity in the calculation of excess surface quantities. The
problem can be solved, however, by calculating the film ten-
sion of a freely suspended smectic film �in nematic or iso-
tropic coexistence depending on the surface tension, �NS or
�IS, to be calculated�. The corresponding surface tension is
half of the film tension in the limit of very thick films �38�.
Figure 4 shows the DS profiles for the three aspect ratios
considered �only half of the film is shown�. Note that in the
case L /D=5 the NS interface is very wide and correspond-
ingly the surface tension is very low with respect to the two
other cases �39�. Table I contains several results obtained for
the different interfaces �40� along with other parameters and
coexistence properties �41,42�. In all cases �WS
�WD �i.e.,
the wall is preferentially wet by the smectic phase over the
disordered phase�, so that the prediction of the Kelvin equa-
tion is that the average capillary smectization line tends to
the bulk value from below in the asymptotic limit �this is
consistent with the behavior presented schematically in Fig.
2�a�; in the other cases, �b� and �c�, it implies a nonmono-

tonic behavior of the average capillary transition line�. In any
case, the value of the difference �WS−�WD makes it clear
that there is stronger wetting by smectic in the case L /D
=3.7, and this fact explains the stronger smectization effect
due to confinement observed in this case and shown by the
fact that the smectic pockets are always below the horizontal
line �=�IS

coex.
Before continuing with our discussion on the phase dia-

grams, we briefly comment on the wetting behavior extracted
from the data in Table I. This behavior is controlled by the
value of the spreading coefficient S. In the case L /D=3.7
where, as already mentioned, the nematic phase is not stable,
the relevant surface tensions are �WS, �WI, and �SI. In general
we would have �WI��WS+�SI, with the inequality corre-
sponding to a partial wetting situation and the equality to
complete wetting of the WI interface by the smectic phase.
The data in Table I give a value for the spreading coefficient
S=�WI−�WS−�SI=230�10−5kT /D2�0. This points to a
nonequilibrium situation in our conjugate-gradient minimiza-
tion, where the thickness of a smectic layer is increasing and
the surface tension of the WI interface �WI is decreasing. The
conjugate-gradient method employed in the minimization of
the density functional is unable to reach the true equilibrium
thickness within the computational time, since the thermody-
namic force pushing the IS interface away from the wall is
too weak. A more rigorous study based on the technique of
the effective surface-tension-adsorption characteristic would
be required �43�, but we believe that, since the thickness of
the smectic layer at the end of the minimization process is
already large, we have a situation of complete wetting. In the
case L /D=5 the relevant equation is �WN��WS+�SN, which
gives for the spreading coefficient S=�WN−�WS−�SN=7
�10−5kT /D2. This is a small but again positive quantity. For
the case L /D=6 the data are also consistent with a situation
of complete wetting by smectic �S=11�10−5kT /D2�. These
conclusions should be taken with caution, since the accuracy
of the different surface tensions are probably close to the
values of the spreading coefficient obtained, at least for the
cases L /D=5 and 6.

V. CONDITIONS FOR OCCURRENCE OF CONNECTED
SMECTIC POCKETS

Now we turn to the question of how the phase behavior in
the regime of narrow pores varies as a function of L /D. As
discussed in Sec. III, when H is large there is a sequence of
triple points where two smectic phases Sn and Sn+1, differing

FIG. 4. Density profiles of the �a� �b� SN interface, and �c� SI
interface. The first two cases correspond to the systems with L /D
=6 and 5, respectively, whereas the other corresponds to the case
L /D=3.7.

TABLE I. Values of reduced chemical potential at bulk coexistence, �DS
coex*=�DS

coex/kT, reduced surface tensions �* �with �*=�D2 /kT�,
spreading coefficient S* �with S*=SD2 /kT� of the different interfaces, coexistence densities in reduced units ��*=�D3�, bulk smectic layer
spacing d0

* �with d0
*=d0 /D�, and reduced layer compressibility of the smectic phase, B*=BD3 /kT, as a function of the length-to-breath ratio

L /D. D is the particle breadth. The nature of the disordered phase is D= I for L /D=3.7 and D=N for L /D=5 and 6.

L /D �DS
coex* �WS

* �WD
* �DS

* 105�S* �WS
* −�WD

* �D
* �S

* d0
* B*

3.7 24.098 −4.2470 −4.1036 0.1411 230 −0.1434 0.1356 0.1466 4.784 8.85

5 21.636 −3.3785 −3.3692 0.0092 7 −0.0093 0.101 0.103 6.267 2.78

6 21.651 −3.3306 −3.2956 0.0349 11 −0.0350 0.086 0.089 7.416 5.64
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by one layer, and a disordered D phase �isotropic or nem-
atic�, may coexist in equilibrium. This structure is main-
tained as H increases. The triple points disappear for narrow
pores, at some layer index n, and the smectic regions of n
and n−1 layers become connected. There is a critical number
of smectic layers nc, which separates the regime of triple
points from the regime where smectic regions become con-
nected. Our DFT results for nc �which are just estimates
based on selective analyses of a few smectic pockets� exhibit
a nonmonotonic behavior as a function of the length-to-
breadth ratio: while for L /D=3.7 the critical number of lay-
ers is small �nc	10�, for L /D=5 it increases by an order of
magnitude �nc	100� while for L /D=6 it decreases again
�nc	15�. Figures 5�a�–5�c� show results corresponding to
the smectic pocket of 26 layers for the three values of L /D
considered. In the first case �L /D=3.7� the system is in the
regime of disconnected smectic regions. In the second case
�L /D=5� the pockets have become completely connected via
the appearance of a critical point in the N-S transition in the
left region of the pocket �see schematic representation in Fig.
2�b��; this we call first scenario. In the third case �L /D=6�
pockets are connected via a second scenario, i.e., through the
breaking of the N-S transition at the middle of the pocket and
the appearance of two critical points. This creates lambda-
shaped transition lines �schematically represented in Fig. 2�,
another example of which is shown in Fig. 5�d� for the case
L /D=6. As one considers narrower pores the length of the

transition line ending in the critical point at the right de-
creases; although we have not verified this explicitly, we
believe that this line eventually disappears, which would
leave a single transition line of the shape shown in Fig. 5�b�
�see schematic phase diagram in Fig. 2�c��.

Our density-functional calculations predict that in the first
two cases, L /D=3.7 and 5, the pockets are broken via the
first scenario, while in the case L /D=6 we have the second
scenario. The reason for the different mechanisms has to do
with the free energies involved between the nematic film and
the compressed �leftmost region of pocket�, Sn

c, stretched
�rightmost region�, Sn

s , or stress-free �intermediate region�,
Sn

sf, smectic films. The values of the free-energy barriers for
the pairs of phases N-Sn

c, N-Sn
s , and N-Sn

sf gives an indication
of which scenario may be applicable in each case, since the
lesser the value of this difference the greater the possibility
for the two phases to become connected. The height of the
barriers is in turn related to the similarity between the struc-
ture of the nematic and smectic phases that coexist prior to
breaking of the first-order coexistence line.

The nonmonotonic behavior of the critical number of lay-
ers nc with L /D can be understood in terms of the balance
between the cost in elastic free energy associated with
stretching or compressing the smectic film by varying the
value of H, keeping the number of layers constant, and the
free-energy cost involved in introducing the disordered phase
in the central region of the pore, 2�DS �since two new inter-
faces are added�. This argument is valid provided a model

FIG. 5. Phase diagrams of the
confined system in the region cor-
responding to a few smectic lay-
ers. �a� L /D=3.7; �b� L /D=5; �c�
and �d� L /D=6.
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based on the assumption of abrupt interfaces can be made;
since this assumption may not be strictly valid in some cases,
the argument is to be taken only as qualitative. The elastic
energy per unit area is proportional to the layer compressibil-
ity and, for a film with n smectic periods, can be estimated as
�44�

B

2Hn

d0

2
�2

=
Bd0

8n
, �11�

where Hn�nd0 �45� �this expression assumes the film to be
compressed by half a period�. We obtain nc�Bd0 /16�DS for
the critical number of layers. Since B depends only weakly
on L /D, but the surface tension of the DS interface is
strongly dependent �see Table I� due to the different nature of
the disordered phases involved �39�, very different values of
nc are obtained: for the cases L /D=3.7, 5, and 6 we have,
respectively, nc	20, 120, and 75; these numbers are in
order-of-magnitude agreement with the results based on DFT
calculations �42�.

VI. ELASTIC EFFECTS AND CLAUSIUS-CLAPEYRON
EQUATION

The shape of the pockets can be understood in terms of
the elastic energy involved when the layers are compressed
or expanded with respect to their bulk equilibrium configu-
ration. When H=Hn=nd0, where d0 is the bulk smectic layer
spacing, there is in principle no elastic energy stored, and the
points �DS�Hn�, with n a large integer, should tend monotoni-
cally to the chemical potential at bulk coexistence, following
the prediction of the Kelvin equation at large H. The modi-
fication introduced in the Kelvin equation by the elastic con-
tribution in a closely related physical system has been dis-
cussed in Ref. �25�. Equating the grand potentials per unit
area of smectic and nematic �or isotropic� phases �with the
latter augmented by the elastic contribution�, assuming
���H�=��H�−�DS

coex is small, we get

H��S
coex − �S

coex��� + 2�WS + B
�H − Hn�2

2Hn

= H��D
coex − �D

coex��� + 2�WD, �12�

where �coex is the grand potential per unit volume of each
phase. Since �S

coex=�D
coex, and letting ��coex=�S

coex−�D
coex, we

obtain

��n�H� = ��0�H� + 
 B

2Hn��coex
� �H − Hn�2

H
, n � 1

�13�

which is the modified Kelvin equation �MKE�. The second
term accounts for the elastic contribution, and corrects the
Kelvin equation when film elasticity is important. For each
value of n the possible values of H are within an interval
about Hn, say H=Hn±d0 /2. Since the prefactor of the elastic
contribution is positive, the MKE predicts that the capillary
smectization line in each smectic period has a concave �ap-
proximately quadratic� shape. Also, it predicts that the line
should be quite symmetrical, since ��0�H� varies, within a

smectic period, only by a small amount �	c /n2, with n the
layer index and c a constant which in the cases considered is
in the interval 	1.5–5.5� for high layer indices. This indeed
agrees with the predictions of our DFT calculations, as will
be described in the following.

Values for the constants B, ��coex, d0, Hn and for the
constants in ��0�H� can be obtained from our DFT approxi-
mation and used in the MKE to obtain quantitative predic-
tions on the shape of each pocket; in this way we can assess
the validity of the MKE and its range of applicability. The
first three constants pose no problem �see the Appendix for
details�. However, the calculation of Hn �i.e., the pore width
for which there would not be any elastic stress stored in the
system�, which gives the location of the minimum, is not
direct in DFT. It is not simply Hn=nd0 for some value of n,
since the layer spacing in the pore is far from uniform: the
walls create a larger spacing between the first and the next
layer �this is reasonable since the wall is hard� compared
with the bulk value, and this misfit slowly relaxes via elastic
forces away from the walls. Figure 6 shows this effect in
some particular instance �in this case the pore width H is
such that the layer spacing d as a function of layer index
tends to the bulk value in the central region of the pore�.
Also, the bulk layer spacing may not even exist if the chemi-
cal potential is below that of the bulk N-S transition. In ad-
dition, the contribution ��0�H� from the KE should be quan-
titative only in the asymptotic limit. In view of this, and in
order to extract some information from the MKE, we have
simply located the function given by Eq. �13� at the mini-
mum given by the density-functional calculations �which im-
plies fixing the value of the Kelvin term and choosing the
appropriate value for Hn�, used the computed value for B and
plotted the resulting function of H; this is done in Fig. 7 for
the case L /D=5 and a high-index pocket �n=210�. The N
-S transition is only approximately reproduced, which may
be an indication that the asymptotic regime is still far from
being reached �note that, apart from the problem of elastic

FIG. 6. Smectic layer spacing d for a smectic phase within a
pore containing 210 layers �due to the symmetry of the profiles,
only half of the layers are shown�, and for a fluid with L /D=5 and
�=21.64kT.

DE LAS HERAS, VELASCO, AND MEDEROS PHYSICAL REVIEW E 74, 011709 �2006�

011709-8



contributions mentioned above, the effective-interface model
used to derive the Kelvin equation, which assumes perfectly
well-developed interfaces, may not be entirely valid even for
very thick films due to the slow relaxation of the structure
away from the walls�.

Finally, the Clausis-Clapeyron equation for two arbitrary
coexisting films 1 and 2 can be obtained and used to discuss
the different slopes of the first-order transition lines in the
phase diagram. We have


 ��

�H
�

T
=

f1 − f2

�2 − �1
, �14�

where f1 and f2 are the solvation �or disjoining� forces �ex-
cess over bulk pressure at fixed chemical potential and sur-
face area� of the two films, and �1, �2 their density adsorp-
tions. If this is applied to the D-Sn transitions, given that
�Sn

��N, the interval with negative slope �left of the mini-
mum� in each pocket is associated with fN
 fSn

, whereas at
the right of the minimum, where the slope is positive, we
must have fN� fSn

. These conclusions are intuitively clear:
for example, in the latter case, the smectic film is swollen
with respect to the natural �bulk� layer spacing and a large
attraction between the two plates results; in the case of the
nematic fN is also negative but small in absolute value. In the
sector at left fSn

is positive and large, while fN is again nega-
tive but small in absolute value. The slope of the layering
transitions in the �-H phase diagrams varies depending on
the particle elongation �it can also depend on the order of the
layering transition and the value of the chemical potential�,
and can also be discussed using the above equation. In this
case the equation involves fSn

and fSn+1
, the solvation forces

of the two smectic films, and �Sn
and �Sn+1

, their adsorptions.
Since now fSn+1

� fSn
�introducing an additional layer into an

n-layer, swollen smectic phase with fSn

0, i.e., attractive

solvation force, at fixed pore width adds a pushing force
coming from the n+1 �shrinked� layers, increasing the sol-
vation force and making it positive, fn+1�0, i.e., repulsive
solvation force�, the change of slope is linked to a change in
the sign of �Sn

−�Sn+1
. In the case depicted in Fig. 5�a� it can

be shown that there is a negative density jump as the layering
transitions S25→S26 or S26→S27 are crossed at constant
chemical potential, and the slope of ��H� is positive. In the
case of Fig. 5�c� the opposite is true. There are cases where
the two situations occur �see, e.g., Fig. 5�b��. In these cases
the two coexistence densities are equal, the slope of ��H�
goes to infinity, and the layering transition line becomes ver-
tical.

VII. CONCLUSIONS

In this work we have analyzed the structure and phase
behavior of a liquid crystal model confined in a slitlike pore.
The model, the hard-spherocylinder model, is analyzed theo-
retically using a sophisticated density-functional approxima-
tion specially suited to dealt with highly inhomogeneous flu-
ids, and modified to include orientational order. The fluid is
highly structured next to the walls confining the fluid, and
different confined phases are found, which can be associated
with confined isotropic, nematic, and smectic phases. As ex-
pected, strong commensuration effects arise in the fluid, due
to commensuration between the equilibrium �bulk� layer
spacing of the layers and the pore width. This brings about a
variety of interesting phase behaviors, with a complicated
structure of first-order phase transitions separating different
phases, but also critical points beyond which confined phases
are connected. The topology of the phase diagram has been
analyzed with respect to aspect ratio. The topology is similar,
containing layering transitions, capillary smectization transi-
tions and, when the nematic phase can be stabilized at bulk,
capillary nematization transitions. The first two features are
intimately related to each other and, for very narrow pores,
the two phenomena become a single one. The various aspects
of the phase diagrams have been connected to the wetting
behavior and the Clausius-Clapeyron equation.

Two questions �among many others� that remain to be
addressed are the following: �i� How confined crystalline
phases enter the picture. The bulk samples possess crystal-
line phases at higher chemical potentials. These phases will
undergo layering and capillary transitions similar to those
predicted for the smectic films. A more sophisticated theory
will be required to tackle this problem. �ii� Different surface
affinities for the smectic phase will certainly modify some of
the phenomena presented in this work. For example, condi-
tions for which the smectic phase partially wets the plates
may lead to a qualitatively different global approach to bulk
or even to a total suppression of capillary smectization
and/or the layering transitions. These aspects will be studied
in future work.
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APPENDIX: THEORETICAL MODEL AND
IMPLEMENTATION

In this Appendix we provide some details on the actual
implementation of the density-functional theory for the prob-
lem at hand, and give some numerical details. In view of the
translational symmetry in the xy plane of our problem, the
one-particle distribution function depends only on the normal
distance from one of the walls z. The ideal free energy can
then be written as

Fid���
kTA

= �
0

H

dz��z�
ln���z��3

4�
� − 1� − �

0

H

dz��z�Srot�z� ,

�A1�

where A is the transverse area of the system and H is the
pore width. The local rotational entropy per particle is given
by

Srot�z� = −� d�f�z,��ln�4�f�z,��� . �A2�

The other contribution to the free energy is the excess con-
tribution Fex���, which accounts for the effect of interactions,
both intrinsic �interactions between fluid particles� and also
extrinsic �interactions between particles and pore walls�.
Since we are interested in highly nonuniform systems, our
approximation needs to be nonlocal in order to account for
the expected density profile structures. We use the Somoza-
Tarazona density-functional approximation, a generalized de-
coupling approximation for anisotropic hard bodies �34,46�.
The intrinsic part of the excess free energy is given in Eq.
�2�. In that expression, �ex

PHE��� is the excess free energy of
an effective system of parallel hard ellipsoids �which is
known since its thermodynamics can be exactly mapped onto
that of a system of hard spheres�, Vexc�r−r� ,� ,��� is the
�negative� Mayer function of two spherocylinders, �̄�r� is an
averaged density which takes into account the structure of
the system in the neighborhood of r in an appropriate man-
ner �we shall briefly discuss this point below�, and �̄PHE�r� is
the local averaged density of a system of parallel hard ellip-
soids, defined by the following equation �33�:

�̄PHE�r� =� dr���r��Vexc
PHE�r − r�� , �A3�

where Vexc
PHE�r� is the �negative� Mayer function of two par-

allel hard ellipsoids. Let �� and �� be the length and breadth
of the hard ellipsoids, respectively. Since the system of par-
allel hard ellipsoids is a sort of auxiliary system in this the-
oretical model, the real one being a system of hard sphero-
cylinders, the question of how to choose �� and �� for given
spherocylinder has to be solved in order to proceed. In the

original formulation of the theory, Somoza and Tarazona pro-
posed a recipe based on equating the inertia tensors of both
particles �34,46�. A simpler choice is that of Velasco et al.
�33� who used the criteria of equal molecular volume v and
equal length-to-breadth ratio. These two conditions lead to
the relations

��

�eq
= 
1 +

L

D
�2/3

,
��

�eq
= 
1 +

L

D
�−1/3

, �A4�

with L and D being the length and breadth of the spherocyl-
inder, respectively, and �eq����

2 ���1/3 is the diameter of the
equivalent hard spheres �both the spheres and the ellipsoids
have the same volume and therefore both systems have the
same packing fraction�. A system of such hard spheres can be
easily shown to be thermodynamically equivalent to the ref-
erence system of parallel hard ellipsoids by means of a
simple change of scale in one direction. In particular, nonlo-
cal weighted density approximations for nonuniform hard-
sphere systems can be easily extended to deal with the ref-
erence system of parallel hard ellipsoids �47�. In this way,
�ex

PHE��� will be given by the excess free energy per particle
of a uniform system of hard spheres of diameter �eq �accu-
rately obtained from the well known Carnahan-Starling fit�,
and the weighted density can be expressed in terms of three
average local densities �n�r�, n=0,1 ,2, given by

�n�r� =� dt�n��t����r + �̃ · t� , �A5�

where �̃ is a diagonal tensor in the reference frame defined
by the director �with components �� and �� along the axis
parallel an perpendicular to the director, respectively�. The
expressions for the three weighting functions �n�r� can be
found in the original work of Tarazona �35�. In our applica-
tion, given that the spatial dependence in only along the z
direction, it can be easily shown �33� that �̄PHE�z�
= 4�

3 �eq
3 �̄0�z�. On the other hand, the factor

�d���r ,����dr�d����r� ,���Vexc�r−r� ,� ,��� in Eq.
�2� can be rewritten, using again ��r ,�����z ,��
=��z�f�z ,��, in terms of an effective potential � which is a
functional of the orientational distribution function,

� d���r,�� � � dR�d����r�,���Vexc�r − r�,�,���

= ��z���z����z,z�;�f�� , �A6�

with

��z,z�;�f�� � � d�� d��f�z,��f�z�,���

�� dR�Vexc�z − z�,R − R�,�,��� �A7�

and R= �x ,y�. The excess free energy then becomes

DE LAS HERAS, VELASCO, AND MEDEROS PHYSICAL REVIEW E 74, 011709 �2006�

011709-10



Fex��� = A� dz
�ex

PHE��̄�z��
�̄PHE�z�

��z� � dz���z����z,z�;�f�� ,

�A8�

where A is the system area. Using Eqs. �3� and �4� it is not
difficult to show that there exists a one-to-one relationship
between the values of the order parameters ��z� and ��z��,
and the effective potential ��z ,z��. The same is true for the
rotational entropy Srot�z� �33,48�. Therefore we can omit the
orientational distribution function and use the profiles ��z�
and ��z� to determine the equilibrium configuration. This
fact allows us, in our practical implementation of this ap-
proximation, to calculate values for ��z ,� ,��� and Srot���
only once. These data can be stored in lookup tables and
interpolated as needed. The central problem to evaluate the
effective potential is the calculation of the spatial integral
over R�, which is the area of a planar section, perpendicular
to the z axis, of the excluded volume of two spherocylinders
with orientations � and ��, at a distance z form its center,
see Fig. 8�a�. In previous work �31,33� a Fourier-series rep-
resentation inspired by the work in Ref. �49� was used.

In Ref. �23� and in the present work we used an alterna-
tive method, originally proposed by Cinacchi �50�, which
improves the efficiency and also the accuracy of the calcula-
tion. In this method, we write the excluded area using polar
coordinates in the xy plane as

Aexc�z,�,��� � � dR�Vexc�z,R − R�,�,���

= �
0

2�

d��
�m

�M

rdr

=
1

2
�

0

2�

d���M
2 ��� − �m

2 ���� , �A9�

where �m and �M are functions of �, z, �, and ��. For fixed
values of �, z, � and ��, �m and �M are the distances to the
main axis of the central particle defining the overlap region
between the two HSCs �see Fig. 8�, and are calculated nu-
merically using the overlap criterion between two particles.
The integral over � in Eq. �A9� were calculated using the

trapezoidal rule with 103 points in the interval �0,2��, and
the distances �m and �M were obtained with an accuracy of
10−7�L+D�. This method to evaluate Aexc�z ,� ,��� im-
proves the quality of the numerical minimization, and is fea-
sible in uniaxial systems, where � is the only nonvanishing
orientational order paramenter �24�; when more order param-
eters are needed to describe the system, as in the case of
biaxial system, the lookup table may depend on too many
variables to make the method practical. The potential
��z ,z� ; �f�� is obtained from Eq. �A7�; angular integrals

�d�̂�d�̂�→2��d� sin ��d�� sin ���d� are done by
Gaussian quadrature in all three angular variables, using 46
roots in each variable. This procedure produces a table with
entries �z ,� ,���, which was constructed with a step ��
=0.01 in the domain �−0.40,0.99�� �−0.40,0.99�, and a spa-
tial step equal to that used to evaluate the spatial integrals
�see later�. The table for the orientational entropy was con-
structed in a similar way.

To end we provide some numerical details on the evalua-
tion of the free energy and its minimization. Integrals over z
and z� �see Eqs. �A2� and �A8�� were computed using the
trapezoidal rule with step size �z=0.05 in the cases L /D
=5 and 6, and �z=0.03 for L /D=3.7. Checks were made
with smaller sizes to assess the numerical accuracy. The
functional was minimized using a conjugate-gradient
method. The criterion for equilibration �converged profiles�
is based on the value of the modulus of the gradient per
variable, g. The criterion used was g
10−6 �in units where
kT=1, D=1�, except in the calculations of wetting properties
where we used g
10−7. The number of iterations necessary
for a profile to converge depends very much on the nature of
the phase, the pore width, the initial profile, and the thermo-
dynamic conditions, among others. Typically, an isotropic
profile with a bad initial guess converges quite quickly �in
about 100–200 iterations�, whereas a smectic profile with a
bad initial profile requires numbers in excess of 4000 itera-
tions. Once a smectic profile is equilibrated, a profile corre-
sponding to new thermodynamic conditions close to the pre-
vious ones normally require only 100–200 iterations.

Bulk properties were calculated using the same procedure,
except that periodic boundary conditions were employed.
For the smectic phase slabs containing about 20 layers were
used, minimizing with respect to ��z�, ��z�, and d at fixed
number of layers, volume, and chemical potential �nematic
and isotropic phases were calculated in slabs of the similar
width, minimizing with respect to ��z�=�0—the mean
density—and, in the case of the nematic, also with respect to
��z�=�0�. Coexistence is calculated by equating the grand
potentials �equal-pressure criterion� of the two phases in-
volved at the same chemical potential. The layer compress-
ibility is calculated from

B =
1

V

 �2�

��2 �
�=0

= d0
2
 �2�

�d2 �
d0

, �A10�

where � is a scale factor �“strain tensor”� relating the dis-
torted and undistorted smectic: z�=�z or d=�d0. The deriva-
tive is computed at fixed � ,V and evaluated at equilibrium.

FIG. 8. �a� Schematic representation of the excluded volume of
two HSCs �dashed line� and the excluded area �shaded region�. �b�
Graphical representation of �m and �M.
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