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Percolation of functionalized colloids on
patterned substrates

Lucas L. Treffenstädt, a Nuno A. M. Araújo bc and Daniel de las Heras *a

We study the percolation properties for a system of functionalized colloids on patterned substrates via

Monte Carlo simulations. The colloidal particles are modeled as hard disks with three equally-distributed

attractive patches on their perimeter. We describe the patterns on the substrate as circular potential wells

of radius Rp arranged in a regular square or hexagonal lattice. We find a nonmonotonic behavior of the

percolation threshold (packing fraction) as a function of Rp. For attractive wells, the percolation threshold

is higher than the one for clean (non-patterned) substrates if the circular wells are non-overlapping and

can only be lower if the wells overlap. For repulsive wells we find the opposite behavior. In addition, at

high packing fractions the formation of both structural and bond defects suppress percolation. As a result,

the percolation diagram is reentrant with the non-percolated state occurring at very low and intermediate

densities.

I. Introduction

Substrates patterned with space-dependent physico-chemical
properties have a strong influence on the equilibrium and
dynamical properties of soft materials deposited or adsorbed
on them. Examples of physical processes affected by the
presence of patterns include wetting,1,2 crystal nucleation,3,4

phase separation,5 freezing,6,7 adsorption,8,9 sedimentation,10

and colloidal transport.11–13

Patterned substrates have been considered as a potential
route to control the self-assembly of colloidal particles.14–18 For
example, even simple one-dimensional periodic patterns can
induce the formation of chains, regular lattices19 or even more
complex structures.20 In parallel, another potential route that
has been considered to colloidal self-assembly is the use of
particles with functionalized patches (patchy particles), yielding
directional interactions and limited valence.21,22 Patchy colloids
are ideal building blocks to obtain e.g. empty liquids,23–26

colloidal micelles,27 quasicrystals,28 and complex lattices.29,30

The first studies of equilibrium and non-equilibrium properties
of functionalized colloidal particles on substrates reveal that, even on
clean (non-patterned) substrates, the critical behavior and dynamics
depend strongly on the particle–particle and particle–substrate
interaction and number of patches, as reviewed in ref. 31.

Here, we focus on the equilibrium properties of functionalized
colloids in the presence of a patterned substrate. We consider
simple patterns consisting of circular wells regularly distributed
in a square or hexagonal lattice arrangement. We focus on the
percolation properties and show that the critical packing fraction
for percolation depends strongly on the nature of the particle–
well interaction (attractive or repulsive) and on the radius of the
wells, Rp. In particular, the percolation transition can either be
delayed or anticipated, when compared to the critical packing
fraction on a clean substrate. For a wide range of model para-
meters, we find a reentrant percolation transition driven by the
formation of both structural and bond defects.

II. Model and methods

As summarized in Fig. 1(a), the functionalized colloidal
particles are modeled as hard disks (core) of diameter s = 1 with
three patches equally distributed on their surface (perimeter).
The patches are described as smaller disks of diameter

d=s ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 2

ffiffiffi
3
pp
� 1

� �
� 0:120. The core–core interaction

is hard and the patch–patch interaction is such that the
potential energy decreases by e when two patches (partially)
overlap, independently of the overlapping area. For the con-
sidered size and arrangement of the patches: (i) only bonds
involving two patches are possible and (ii) a pair of particles can
share at most one single bond.32

The substrate is patterned with circular wells of radius Rp

with their geometric centers distributed spatially either in a
square or hexagonal lattice arrangement. Particles are distributed
on the substrate forming a monolayer. The particle–substrate
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interaction potential, Upc(r), is radial, solely depending on r, the
distance between the center of the particle and the center of the
well. Upc(r) is constant for a core r o Rp and goes to zero with the
inverse square distance for r 4 Rp, see Fig. 1(b). For numerical
simplicity, we introduce a cut-off distance, Rc, which is fixed at
half of the lateral length of the simulation box. The potential
Upc(r) is slightly shifted such that it is continuous at Rc, so

UpcðrÞ
Up

¼

�1 if roRp

0 if r4Rc

� a2

rþ a� Rp

� �2 þ
a2

Rc þ a� Rp

� �2
r� Rp

Rc � Rp
otherwise:

8>>>>><
>>>>>:

(1)

The parameter a controls the softness of the potential and we fix
it at a/s = 0.2. The depth of the potential well is given by Up. We
set Up/e = �4 (Up/e = 4) for the case of repulsive (attractive)
potential wells. We consider 25 and 36 wells for square and
hexagonal lattices, respectively. For both hexagonal and square
patterns the lattice constant is fixed to 20s. Thus, the lateral
length of the substrate is L E 100s and two potential wells

overlap if Rp/s Z 10. Whenever two or more wells overlap, the
potential inside the overlapping region is always set to Up. We
consider several sizes of the wells in the range Rp/s A [0,15]
which goes from very small (Rp E s) non-overlapping wells to
very large (Rp c s) fully overlapping wells. We use periodic
boundary conditions along both directions.

We performed canonical Monte Carlo simulations to study
the percolation properties. The control parameter is the packing
fraction, Z = Nv0/A, where N is the number of particles, v0 = p(s/2)2

is the volume (area) of the hard cores, and A is the total area of the
substrate. Here, we consider values of N in the range E[103,104],
and thus Z E [0.1,0.7]. At each Monte Carlo sweep (MCS),
we sequentially perform an attempt to move and rotate every
particle. The displacements and the rotation angles are randomly
generated from a uniform distribution. At the beginning of
each simulation we estimate the maximum displacement and
maximum rotation angle that each particle is allow to perform in
one move. Both parameters are adjusted such that approximately
50% of all particles moves are accepted during the simulation.

To generate the initial configuration, we distribute the
particles without overlapping and then run 104 MCS at a very
high temperature (kBT/e = 102) such that the positions and the
orientations of all particles are randomized. We then equilibrate
the system running 5 � 106–107 MCS (depending on the model
parameters) and accumulate data over 106–107 additional MCS.

III. Results

In bulk, a two-dimensional system of functionalized particles with
three patches undergoes a first order vapor–liquid transition by
increasing the density at sufficiently low temperatures.32 The
transition line ends at a critical point for high temperatures. Above
the critical temperature, a continuous percolation transition is still
observed by increasing the particle density.

Here, to focus on the role of the pattern, we fix the tem-
perature at kBT/e = 0.15, which is well above the vapor–liquid
critical point of the bulk phase diagram.32 We first analyze the
percolation transition on a clean substrate, i.e., a substrate with no
potential wells. To characterize the percolation transition, we
measure the fraction %s of particles belonging to the largest cluster
of connected particles. For simplicity, we estimate the percolation
threshold as the value of the packing fraction Z = Z0 at which %s = 1/2.
As shown in Fig. 2(a), this roughly coincides with the position of the
peak in the second moment of the cluster-size distribution. We
estimate Z0 E 0.33 for a clean substrate. Snapshots for packing
fractions below, close, and above the percolation threshold are
shown in Fig. 2(b). Fig. 2(c) shows the cluster-size distribution P(s),
where s is the fraction of particles in the cluster. At low packing
fractions the particles are aggregated in small (finite) clusters, while
above the percolation threshold, there is an infinite cluster that
spans the entire substrate.

A. Percolation on a patterned substrate: square lattice

Let us first consider a pattern consisting of attractive circular
wells arranged in a square lattice. Fig. 3 shows the cluster-size

Fig. 1 (a) Schematic of the model: a substrate patterned with a square
lattice of potential wells (grey circles of radius Rp). The inset shows a close
view of the particle model. Colloidal particles are described as hard-core
disks of diameter s decorated with three patches (disks of diameter d)
equally distributed on their surface. Whenever two patches overlap the
potential energy decreases by e. The interaction potential between the
wells and the colloidal particles (disks) is either attractive or repulsive. In
the case of attractive wells, the particles are more likely to be found inside
the wells, as illustrated in the figure. The red square symbolizes one unit
cell of the pattern (the lattice constant is fixed to 20s). Several patterns
with Rp/s A [0,15] are considered. (b) Plot of the radial dependence of the
particle–well potential as a function of the distance r between the center
of the particle and the center of the well.
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distribution, P(s), for different packing fractions, when the
radius of the wells is Rp/s = 8. Clearly, P(s) is significantly different
from the one obtained on a clean substrate, see Fig. 2(c). P(s) is

characterized by a sequence of well defined peaks for cluster of
sizes s E ns0. Here, s0 is the characteristic size of a cluster of
radius Rp and n = 1, 2, 3,. . . As shown in the inset of Fig. 3, the
colloidal particles tend to accumulate inside the attractive
wells, what promotes the formation of compact clusters. As
the average packing fraction increases, not all particles can fit
within the potential well and thus they occupy the interstitials
between the wells. Nevertheless, since the particle–well inter-
action potential decays with the distance to the center, the
particles tend to accumulate close to the perimeter defined by
Rp. For repulsive wells, the colloidal particles tend first to
occupy the interstitials and only for high average packing
fractions occupy the core of the wells.

Fig. 4 summarizes our findings for the percolation properties
on a substrate with potential wells organized in a square lattice.
Fig. 4(a) is the two-parameter percolation diagram (packing
fraction Z vs. radius of the well Rp), for attractive (right-hand
side) and repulsive (left-hand side) wells. The system exhibits a
very rich behavior that we discuss in detail below.

Attractive wells. We start describing the limit of small non-
overlapping attractive wells. In this case, the colloidal particles
tend to accumulate inside the wells. Only when the density
inside the wells is significantly high, particles occupy the space
in between wells, eventually forming bridges between clusters
in different wells, what leads to global percolation. Therefore,
the packing fraction at the percolation threshold, Zp, is larger
than the one for clean substrates Z0.

To characterize the structure of the clusters, we calculate the
orientational order parameter

~q
ðiÞ
6 ¼

1

6

Xni
j¼1

exp i6yðiÞj
� ������

�����; (2)

where, y(i)
j is the angle between an arbitrary axis of reference

and the vector joining the geometrical centers of particles i and
j. The sum runs over all particles at a distance r/s o 1.2 from
particle i. This order parameter is one when particle i is
surrounded by six neighbors in a hexagonal configuration.

Snapshots below and above the percolation transition in the
case of small non-overlapping wells are shown in Fig. 4(b), state
points 0 and 1, respectively. (See also Fig. 4(a) to locate the state
points in the percolation diagram.) The particles are colored
according to their order parameter q̃6.

At the percolation transition, the particle density inside the
wells is much higher than the percolation density on a clean
substrate. Inside the wells, particles are organized in a six-fold
symmetry, corresponding to a high value of the order para-
meter q̃6. However, not all patches are bonded due to geome-
trical constraints. At very high packing fractions, particles in
the largest, percolated cluster are fully bonded, forming a
honeycomb-like lattice with an isolated (not bonded) particle
in the middle, as shown in the inset of Fig. 4(b), for the state
point 3. In the interstitials of the wells, the particles form an
open network (note the low value of q̃6), similar to what
is observed for clean substrates close to the percolation
threshold.

Fig. 2 Percolation on a clean substrate. (a) Fraction of particles in the
largest cluster %s and second moment of the cluster-size distribution s2

(multiplied by a factor 10 for visualization purposes) as a function of the
packing fraction. (b) Snapshots for three packing fractions: below Z = 0.1
(left), close to Z = 0.3 (middle), and above Z = 0.4 (right) the percolation
transition. Each cluster is colored differently. (c) Cluster size distribution
P(s), as a function of the cluster size s, for different values of the packing
fraction, as indicated.

Fig. 3 Semi-logarithmic plot of the cluster-size distribution P(s) as a function
of the cluster size s for different values of the packing fraction, as indicated. The
substrate is patterned with a square lattice of circular potential wells of radius
Rp/s = 8. The inset is a partial snapshot of the simulation box (Z = 0.45) showing
a cluster of colloidal particles that extends over three potential wells. Different
particle colors correspond to different clusters.
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Fig. 4 Square lattice. (a) Percolation phase diagram in the plane of radius of the potential well core Rp and packing fraction Z. The light brown (light blue)
area is the non-percolated (percolated) region, as indicated. On the left (right) of the vertical dashed line, we show the results for repulsive (attractive)
wells. The wells on the substrate form a square lattice. The numbered green squares are selected state points for which a snapshot is shown in panel (b).
The empty circles are the percolation values estimated numerically using Monte Carlo simulations. The solid line is the theoretical prediction (see text for
details). (b) Selected snapshots of the central region of the substrate. The packing fractions and radii of the well of each configuration is indicated in panel
(a) (green squares). The top (bottom) group of snapshots correspond to attractive (repulsive) wells. The grey areas indicate the energetically favorable
regions for the colloidal cores. The colloids are colored according to the value of their order parameter q̃6. The inset in the snapshot 3 is a close view
showing the underlying bonding lattice: a honeycomb lattice with an isolated particle in each unit cell.
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Based on the observations described above, we can estimate
the packing fraction at the percolation threshold. For that, we
hypothesize that (i) the packing fraction inside the wells is
Z1 4 Z0; (ii) the packing fraction in the interstitials is the same
as the one for a clean substrate, Z0. Hence, the percolation
threshold, for non-overlapping attractive wells is

Za,no(Rp) = AnoZ1 + (1 � Ano)Z0, (3)

where Ano is the fraction of the area of the substrate covered by
the core of the wells (within Rp). Thus, for non-overlapping wells,
Ano = nppRp

2/A, with np the number of wells and A the area of the
substrate. As shown in Fig. 4(a) (solid lines), eqn (3) with Z1 = 0.65
is a good estimator for the percolation line. In the limit Ano - 0
(very-small wells), the packing fraction at the percolation thresh-
old converges to the one on a clean substrate, i.e.,

lim
Rp!0

Zp Rp

� �
¼ Z0: (4)

The packing fraction at the percolation threshold increases
monotonically with Rp until Rp/s E 9. For this value of Rp, Zp E
0.54, which is about 1.6 times higher than the one on a clean
substrate. Above that value of Rp, an abrupt decay of Zp is observed.
From Rp/sE 9.4 to Rp/sE 10.2 the packing fraction changes from
Zp E 0.54 4 Z0 to Zp E 0.28 o Z0. For our setup, the lattice
constant of the pattern is 20s. Hence, the core of two neighboring
wells mutually overlap if Rp Z Rt, with Rt/s = 10. Therefore, if the
well radius is Rp \ Rt � s � 2d E 9s, it is possible to have bonds
between particles inside two different wells. See the snapshots
shown in Fig. 4(b) state points 2 (non-percolated) and 3 (perco-
lated). This is the reason behind the abrupt decay of Zp.

If the core of the wells overlaps, a percolation cluster can be
formed by particles all inside the core of the wells. As a result,
the packing fraction at the percolation transition decreases
with respect to that on a clean substrate. Also in this limit, it is
possible to estimate the percolation threshold. For that, we
hypothesize that (i) the particles are all within the core of the
wells; (ii) the packing fraction inside the wells is Z0. Then, the
percolation transition is expected to occur at,

Za,o(Rp) = AoZ0, (5)

where Ao is the area fraction of the substrate covered by overlapping
wells. A comparison between the predicted packing fraction and
the simulation results is shown in Fig. 4(a). Snapshots below and
above the percolation threshold for the case of overlapping wells
are shown in Fig. 4(b), state points 4 and 5, respectively. The
minimum threshold is obtained for Rp/s E 10.2, for which Zp E
0.28, what is B15% lower than the one on a clean substrate.

If the wells are very large, in comparison to the particle size,
then the entire substrate is covered by cores of the wells and the
potential is uniform across the substrate. In this limit, Ao - 1, and
we recover the percolation threshold on a clean substrate, i.e.,

lim
Rp�s

Zp Rp

� �
¼ Z0: (6)

Repulsive patches. The percolation phase diagram for a
square lattice of repulsive patches is shown in the left-hand
side of Fig. 4(a). The wells and the interstitials interchange their

role with respect to the case of attractive wells. The wells are
repulsive and hence the colloidal particles tend to occupy first
the interstitials until the density there is very high. The limit of
small repulsive wells is similar to the limit of very large
attractive wells. In both cases, we find Zp o Z0. The snapshots
6 and 7, in Fig. 4(b), correspond to a non-percolated and a
percolated state, respectively, in the regime of non-overlapping
repulsive wells. To predict the percolation threshold for non-
overlapping repulsive wells, we hypothesize that (i) the particles
completely avoid the repulsive wells; (ii) in the interstitials the
packing fraction is the same as in a clean substrate. Then,

Zr,no = (1 � Ano)Z0. (7)

This simple geometrical model slightly overestimates the effect
of the substrate on the transition (see Fig. 4(a)), but still
provides a qualitative description of the percolation line. Note
that, the above hypotheses are valid only in the limit of a very
strong substrate–particle interaction, in which the particles
completely avoid the repulsive regions.

The packing fraction at the percolation threshold decreases
monotonically with Rp until Rp/s E 9. For wells of size Rp/s = 9,
the percolation transition occurs at Zp E 0.19, that is B45%
lower than on a clean substrate.

In the limit of large repulsive wells, particles tend to
accumulate in the interstitials, which are now isolated. This
limit corresponds to what is observed for small attractive wells.
Therefore, as discussed above, to form a percolation cluster, it
is necessary to form bridges between interstitials. The larger the
interstitials are (without overlapping), the higher the packing
fraction is at the percolation threshold. An estimation for the
packing fraction at the percolation threshold is given by,

Zr,o = (1 � Ao)Z1 + AoZ0. (8)

To obtain this expression, we assumed that, at the percolation
threshold, the density in the interstitials is Z1 and the density
inside the repulsive wells is Z0. As before, setting Z1 = 0.65, we
obtain a good qualitative and quantitative agreement with the
numerical data, see Fig. 4(a).

We find a reentrant percolation transition for repulsive wells
of size 7 t Rp/s t 9, see Fig. 4(a). By increasing the packing
fraction (vertical direction in the diagram), we find: non-
percolated, percolated, non-percolated, percolated states. The
snapshots 6, 7, 8, and 9 in Fig. 4(b), are representative of the
reentrant transition. The percolation at low packing fractions
(state points 6 and 7) corresponds to the one on a substrate of
non-overlapping repulsive wells, where particles accumulate
in the interstitials. Surprisingly, by increasing the packing
fraction, the system undergoes a transition from a percolated
to a non-percolated state (see state points 7 and 8). This
transition is driven by the formation of defects on both the
orientational and the spatial order of the particles. To accommodate
an increase in the density of particles in the interstitials, the
particles organize in a compact manner, with local hexagonal
order, as indicated by the high value of q̃6 (state points 8 and 9).
The particles form also a fully bonded honeycomb-like structure
with isolated particles in the middle of each unit cell. As shown
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in Fig. 4(b) and 5, the interstitials are interconnected through
narrow channels, with a width of a few particle diameters.
Through these channels, the formation of a percolation cluster
might be suppressed due to the emergence of bond and struc-
tural defects. A local drop of the order parameter q̃6 signals the
position of the structural defects, see state points 8 and 9. The
bond defects are visible in the snapshots shown in Fig. 5, where
different clusters have different colors. For even larger packing

fractions, the percolation is recovered via the formation of
bridges inside the repulsive wells, see state point 9, in Fig. 4(b).

In Fig. 6, we show the fraction of particles in the largest
cluster (a) and the second moment of the cluster-size distribu-
tion (b) in a substrate with repulsive wells of Rp/s = 8. Both
quantities are consistent with a reentrant transition. We have
considered different system sizes and no strong finite-size
effects are observed (see figure).

B. Percolation on a patterned substrate: hexagonal lattice

We now consider a pattern consisting of circular wells arranged
in a hexagonal lattice. The percolation phase diagram together
with snapshots are shown in Fig. 7(a) and (b), respectively.

The percolation phase diagram is qualitatively the same as
in the case of a square lattice. The simple geometrical models
also predicts quantitatively the packing fraction at the percola-
tion transition. The reentrant percolation transition for repul-
sive wells is also observed. As in the previous substrate pattern,
the formation of defects drives a transition to a non-percolated
state by increasing the density from a percolated state.

IV. Summary and conclusions

The presence of a patterned substrate substantially affects the
percolation properties of a system of functionalized colloidal
particles. We have studied substrate patterns consisting of a
sequence of either attractive or repulsive circular wells. For
increasing packing fractions, the colloidal particles accumulate
first in the regions of lower potential energy, i.e., inside the
wells if they are attractive or in between if they are repulsive.
The regions of high potential energy are only occupied for large
packing fractions. When the regions of lower potential energy
percolate (e.g. overlapping attractive wells), the percolation
transition for the colloidal particles occurs for lower packing
fractions than in the case of a clean (non-patterned) substrate.
On the contrary, if the low potential energy regions are fragmented,
the percolation threshold is indeed larger than in a clean substrate.

Fig. 5 Snapshots (partial region) for three different packing fractions, as indicated. The substrate is patterned with a square lattice of circular repulsive
wells of radius Rp/s = 8. An arbitrary color has been assigned to each cluster. The system undergoes a reentrant percolation transition by increasing the
packing fraction.

Fig. 6 Fraction of particles in the largest cluster (a) and second moment
of the cluster-size distribution (b) as a function of the packing fraction. The
substrate consists of a square lattice of np � np repulsive wells, each of size
Rp/s = 8. Two system sizes are shown: np = 5 (violet squares) and np = 7
(orange circles). The gray vertical lines in (a) indicate the packing fraction at
which %s = 0.5, what roughly coincides with the maximum in s2.
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Fig. 7 Hexagonal lattice. (a) Percolation phase diagram in the plane of radius of the potential well core Rp and packing fraction Z. The light brown (light blue) area
is the non-percolated (percolated) region, as indicated. On the left (right) of the vertical dashed line we show the results for repulsive (attractive) wells. The wells on
the substrate form a hexagonal lattice. The numbered green squares are selected state points for which a snapshot is shown in panel (b). The empty circles are the
percolation values estimated numerically using Monte Carlo simulations. (b) Selected snapshots of the central region of the substrate. The packing fractions
and radii of the well of each configuration is indicated in panel (a) (green squares). The top (bottom) group of snapshots correspond to attractive (repulsive) wells.
The grey areas indicate the energetically favorable regions for the colloidal cores. The colloids are colored according to the value of their order parameter q̃6.
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We have shown that the percolation threshold can be estimated by
a simple model, based on pure geometric arguments.

In the case of repulsive wells, we find a reentrant percolation
transition related to the formation of structural and bond
defects, what suppresses percolation for intermediate values
of packing fraction. The percolation is only recovered for very high
packing fractions. Previous studies of functionalized colloidal
particles have reported also reentrant phenomena driven by,
e.g., gravitational fields,33,34 competition between different energy
scales,35–37 and patches activated by temperature.38

For non-overlapping wells, the cluster-size distribution is
characterized by well-defined peaks at certain cluster sizes. This
suggests that the percolation transition might be no longer
continuous.39 Future works might consider studying the nature
of the transition in detail for different patterns, temperatures,
and number of patches per particle.

For simplicity, we considered a two-dimensional system but
we expect the results to be valid in the sub-monolayer regime,
provided that the vertical position of the particles relative to the
substrate does not vary significantly. There are several experimental
techniques available to obtain patterned substrates, such as,
e.g., microcontact printing,40 chemically patterned substrates
with anionic and cationic regions,41 soft lithography,42 and optical
substrates using arrays of optical tweezers.43–46 Also various
approaches have been developed to synthesize functionalized
colloids.22,47–50

We have considered a monocomponent system. New phenom-
enology is expected in the case of binary and ternary mixtures of
functionalized colloids for which several types of percolated states
are possible. Examples are bigels51,52 and trigels53 in which inter-
penetrated networks made of single species percolate the system.

Finally, we have focused on equilibrium properties. Some of the
phenomenology described here might be dynamically inaccessible
due to the formation of kinetically trapped structures.9,31,54,55

Analyzing the dynamics on patterned substrates is therefore a
fundamental question of practical interest that should be consid-
ered in future works.
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Gama, Soft Matter, 2016, 12, 1550.
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