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Lattice symmetries and the topologically
protected transport of colloidal particles†
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The topologically protected transport of colloidal particles on top of periodic magnetic patterns is

studied experimentally, theoretically, and with computer simulations. To uncover the interplay between

topology and symmetry we use patterns of all possible two dimensional magnetic point group symmetries

with equal lengths lattice vectors. Transport of colloids is achieved by modulating the potential with

external, homogeneous but time dependent magnetic fields. The modulation loops can be classified into

topologically distinct classes. All loops falling into the same class cause motion in the same direction,

making the transport robust against internal and external perturbations. We show that the lattice symmetry

has a profound influence on the transport modes, the accessibility of transport networks, and the

individual transport directions of paramagnetic and diamagnetic colloidal particles. We show how the

transport of colloidal particles above a two fold symmetric stripe pattern changes from universal adiabatic

transport at large elevations via a topologically protected ratchet motion at intermediate elevations toward

a non-transport regime at low elevations. Transport above four-fold symmetric patterns is closely related

to the two-fold symmetric case. The three-fold symmetric case however consists of a whole family of

patterns that continuously vary with a phase variable. We show how this family can be divided into two

topologically distinct classes supporting different transport modes and being protected by proper and

improper six fold symmetries. We discuss and experimentally demonstrate the topological transition

between both classes. All three-fold symmetric patterns support independent transport directions of

paramagnetic and diamagnetic particles. The similarities and the differences in the lattice symmetry

protected transport of classical over-damped colloidal particles versus the topologically protected

transport in quantum mechanical systems are emphasized.

1 Introduction

The theoretical description of topological insulators high-
lighted the connection between symmetry and topology in
quantum phases of matter.1,2 Symmetries and the topology of
quantum matter are deeply intertwined. The exploration of the

role of symmetry in topological phases has led to a topological
classification of phases of matter.3 The complex quantum wave
function of an excitation in a lattice can be considered as a two
dimensional vector with real and imaginary part components
that lives in the first Brillouin zone of the reciprocal lattice.
When one identifies the borders of the first Brillouin zone it is
topologically a torus. Attaching the quantum wave function
vector to this torus mathematically defines a vector bundle that
can be characterized by Chern classes. These classes must be
compatible with the symmetries of the Hamiltonian. Chern
classes are symmetry protected against perturbations com-
patible with the symmetry. Amongst the most prominent
symmetries protecting topological insulators are the time
reversal symmetry, the particle hole symmetry, but also the
point symmetry of the lattice.4–6 Different constraints of the
lattice symmetries cause physical distinct effects on lattices of
different symmetry.7,8 In topological nontrivial systems Dirac
cones play a crucial role. The number of these Dirac cones in a
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hexagonal and a square lattice differ and their robustness
against perturbations is different if they are located at a high
symmetry point, a high symmetry line or a generic location of
the Brillouin zone.9

The variety of phenomena enriches when considering time
dependent periodically driven systems. In such systems the fre-
quency or energy of an excitation is conserved only modulo the
frequency of the driving field and the first frequency zone can be
folded into a circle in the same spirit as folding the first Brillouin
zone into a torus.10,11 Floquet topological insulators are one example
of topologically non trivial systems arising from periodic driving.

The discreteness of spectra of quantum phenomena is one
ingredient shared also with spectra of bound classical waves
and with the nature of topological invariants. The quantum
Hall effect is one important example, where transport coeffi-
cients increase in discrete steps that contain only fundamental
constants of nature including Planck’s constant. The discrete-
ness of the steps are caused by topology.12

The topological classification of phases is not restricted to
quantum systems. There are other non-quantum vector waves
in lattices13–18 that can be characterized in just the same way.
Hence the topological discreteness also appears in many clas-
sical wave like systems. The topological characterization is not
restricted to classical vector bundles. It has been applied to
non-equilibrium stochastic systems that describe biochemical
reactions.19 We applied the concept of topological protection
to the dissipative transport of magnetic colloidal particles on
top of a modulated periodic magnetic potential.20,21 There the
transport of the point particle is fully characterized by the
topology of the mathematical manifold on which it moves.
The manifold does not carry any vector property. It can be
characterized by its genus, a topological invariant somewhat
more descriptive than the Chern class. We have shown that the
driven transport of paramagnetic or diamagnetic colloidal
particles above a two dimensional lattice is topologically pro-
tected by topological invariants of the modulation loops used to
drive the transport.20,21 Non-topological transport of particles
in a dissipative environment is usually vulnerable because of a
spreading of the driven motion with the distribution of properties
of the classical particles22–28 as well as due to the abundance of
possible hydrodynamic instabilities29,30 that limit the control over
their motion. Topologically protected particle transport in con-
trast is robust against sufficiently small continuous modifications
of the external modulation. Only when the modulation loops are
changed drastically they will fall into another topological class,
and the direction of the transport changes in a discrete step.

In this work we investigate how the topological classes of
modulation loops are affected by the lattice symmetry. We use
experiments, theory and simulations to study transport above
lattices of all possible two dimensional magnetic point sym-
metry groups and examine the impact of the symmetry on the
number of transport modes, the number of topological invariants
and on the type (adiabatic or ratchet) of transport. We show
that lattice symmetry, as in topological crystalline insulators,4–9

has a profound influence on the topologically protected trans-
port modes.

Applying periodic boundary conditions the unit cell of each
lattice is a torus, which defines the action space. That is, the
space in which the colloids move. The colloids are driven with
periodic modulation loops of an external magnetic field, the
direction of which defines the control parameter space. As a
result of the interplay between the external magnetic field and
the static magnetic field of the pattern, action space is divided
into accessible and forbidden regions for the colloidal particles.
For every point in an accessible region there exist a direction of
the external magnetic field such that the magnetic potential
has a minimum at that point. The borders between different
regions in action space are characterized by special objects in
control space. Modulation loops of the external field that wind
around these special objects in control space cause colloidal
transport along lattice vectors in action space.

In ref. 20 and 21 we studied the motion of colloids above
hexagonal and square patterns, respectively. Here, we extend
our previous studies in several ways. We corroborate the theory
developed in ref. 20 and 21 with experiments on four-fold
symmetric patterns and prove experimentally the existence of
ratchet modes in the six-fold symmetric patterns. We also develop
a theory for two- and three-fold patterns and prove their validity
with experiments. Moreover, we find theoretically two new topo-
logical transitions, one in the non-universal stripe pattern, and
one in the family of three-fold patterns. All theoretical predictions
are tested experimentally.

2 Colloidal transport system

In this section we introduce a soft matter system for Floquet
crystalline symmetry protected driven transport of colloidal
particles on top of two dimensional magnetic lattices of different
symmetry.

2.1 Magnetic colloids on magnetic lattices

Our system consists of a two dimensional periodic magnetic
film having domains magnetized in the z-direction normal to
the film (Fig. 1a). We consider a film that has as much area

Fig. 1 (a) Magnetic pattern of symmetry C2, C3, C4, and C6 with wavelength
l = 2p/Q and magnetization M xAð Þ. The magnetic colloidal particles move
in the two dimensional action space A on top of the film at fixed elevation
z 4 l. (b) A modulation loop LC of the external magnetic field Hext in the
control space C causes a transport loop LA of the colloidal particle.
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magnetized in the +z as in the �z direction. The magnetic
field Hp of the pattern can be derived from a scalar magnetic
potential

Hp = �rc (1)

that satisfies the Laplace equation and can be written as

c ¼
X
Q

cQe
�QzeiQ�xA (2)

where the sum is taken over the reciprocal lattice vectors Q
(Q = 2p/l for the smallest non-zero reciprocal lattice vector) of
the two dimensional lattice and xA is a two dimensional vector
in the lattice plane. Lower Fourier modes dominate the sum (2)
at higher elevation z.

Magnetic colloids can be confined in a liquid at a fixed
elevation z that is larger than the wavelength of the pattern l by
coating the magnetic film with a polymer film of defined
thickness or by immersing the colloids into a ferrofluid that
causes magnetic levitation of the colloids.20 We call the two-
dimensional space in which the particles move the action space
A. We will use a number of geometric spaces and objects. Their
definitions are listed in Appendix A.3. The positions of the
particles are described by the vector xA.

Magnetic fields induce magnetic moments

m = weff VH (3)

of the colloids of effective susceptibility weff and volume V. We
define the colloidal potential U = H2. The colloids thus acquire a
potential energy E = �weff VU. This depends on the square of the
total magnetic field H = Hp + Hext which is the superposition of
a homogeneous time dependent external field to the hetero-
geneous pattern field. The potential energy E has a different sign
for paramagnetic and diamagnetic colloids. Hence, paramagnetic
particles move to positions that are maxima of U while diamag-
netic colloids move to the minima.

We are particularly interested in the motion of paramagnetic
and diamagnetic colloids at an elevation z 4 l above the mag-
netic film such that only the contributions of the lowest non zero
reciprocal lattice vectors to eqn (2) are relevant. At this elevation
the response of the colloidal particles moving in action space A
becomes universal, i.e. independent of the details of the pattern.
The symmetry of the pattern becomes the only important pro-
perty. If the lattice has a proper CN rotation symmetry or an
improper SN symmetry there are N reciprocal lattice vectors
of lowest absolute value contributing to the universal scalar
magnetic potential c* and we find

c� ¼ ~ce�Qz
XN�1
n¼0

det Rn
N

� �
ei R

n
N �Q½ ��xA (4)

where Q is one of the lowest absolute value reciprocal unit
vectors and RN denotes a proper rotation matrix by 2p/N
det RNð Þ ¼ þ1ð Þ or an improper rotation consisting of a rota-

tion by 2p/N and a reflection at the film plane det RNð Þ ¼ �1ð Þ.
The universal scalar magnetic potential is determined only by
the symmetry of the lattice and a prefactor carrying a phase f

and an amplitude, ~c = | ~c|exp(if). The amplitude is irrelevant
and the phase f is only important in the N = 3 case. The scalar
magnetic potential will be the same for all lattices sharing the
same point symmetry.

Magnetization patterns generating such universal magnetic
potentials are shown in Fig. 2. The magnetization is given by

M xAð Þ ¼Msezsign tðfÞ þ
XN�1
n¼0

cos Rn
N �Q

� �
� xA � f

� � !
(5)

with tðfÞ � 1

2
cosð3fÞdN;3 chosen such that the magnetic moment

of a unit cell (UC) vanishes,ð
UC

M xAð ÞdxA ¼ 0: (6)

The colloidal potential can now be reduced to the leading
non-constant term, which is described by the universal colloidal
potential:

U� ¼ eQzHext �Hp xAð Þ: (7)

Note that the prefactor eQz rescales the potential such that it
is independent of z, see eqn (4).

As we will see, adiabatic transport where the colloids
adiabatically follow the maximum/minimum of the potential
is possible along the crystallographic directions of the lattices
when the potential is modulated with external fields. We call
the space of the external field that may alter the colloidal
potential the control space C. Following eqn (7) we see that in
the universal case changing the magnitude of Hext does not
alter the position of the extrema of the colloidal potential.
Control space C, is thus a sphere of the external fields of
constant magnitude. Each direction of the external field,
which is a point in C, produces a different colloidal potential
(see Fig. 1b).

2.2 Lattice symmetries and topology

In Fig. 2 we depict the Wigner Seitz unit cells (with lattice
vectors a1 and a2) of the periodic magnetic patterns defined by
eqn (5) for N = 2, 3, 4 and N = 6 and show the points of these
patterns having CN (green) or S2, S4 or S6 (red) symmetry. The
patterns in Fig. 2 exhaust all possible single lattice constant
(a1 = a2) magnetic point groups in 2D. White areas of the unit
cell are magnetized in the positive z-direction and black areas
in the negative z-direction. There are other patterns creating the
same universal potential, the field of which differs from the
field of the patterns of Fig. 2 if experienced at lower Qz o 1
(non-universal) elevation. Patterns having both CN (green)
and SN (red) symmetries (N = 2 or N = 4) can be generated by
using either proper or improper rotations. N = 3 can be
generated only with proper rotations. The C6 and S6 symmetries
arise if we chose N = 3 in eqn (5) and f = 0 (f = p/6). They can
equally well be produced with N = 6 and using proper (improper)
rotations.

Let us start with the topological characterization of action
space. For a lattice with two-fold symmetry there is only one
relevant reciprocal lattice vector and therefore the lattice is
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quasi one dimensional (see Fig. 2a). Since the lattice is periodic,
we can deform the Wigner Seitz cell to merge the opposite
borders. For N = 2 the Wigner Seitz cell is a one dimensional
segment, and hence action space A2 becomes topologically a
circle. For all other symmetries, action space AN , with N 4 2,
is a torus.

Action space is topologically nontrivial for both N = 2 and
N 4 2 since both a circle and a torus have a hole. For N = 2
there is one winding number around the hole, while for a torus
there are two winding numbers. The winding number of action
space A has a very simple meaning in the underlying lattice.
A winding around the circle (torus) corresponds to a translation
by one unit vector in the lattice.

As we already mentioned, control space C is a sphere of
radius Hext. The two-fold symmetric colloidal potential is inde-
pendent of the in-plane external field component perpendi-
cular to Q1. Therefore, in the two dimensional problem we only
need a reduced control space Cr2, which is the intersection
of C with the plane spanned by Q1 and the vector normal to
the film n = ez. Like action space A2 the reduced control space
Cr2 is a circle.

The topology of the reduced control space Cr2 is fundamentally
different from the full control space C. The latter is a genus zero
spherical surface that has no holes. For this reason we can
continuously deform any closed loop of the external field LC into

any other loop LC
0
. This is not the case if we restrict the modula-

tion loops to lie on the reduced control space Cr2, which is a circle
with a hole. Modulation loops in Cr2 can be characterized by their

winding number around the hole w LrC
� �

. The winding number is a
topological invariant and we cannot continuously deform a modu-
lation loop Lr

C with one winding number w into another modula-

tion loop Lr0
C with a different winding number w0 a w.

2.3 Classification of modulation loops

The fundamental question that we address in this work is, what
are the topological requirements for a modulation loop LC in
control space to cause action loops LA with different, non
vanishing winding numbers in action space and hence induce
transport of the colloidal particles.

For N = 2 the answer is simple in reduced control space Cr2
but less obvious in full control space C. Reduced control and

Fig. 2 Wigner Seitz cells, unit vectors (blue), and reciprocal lattice vectors (gray) of all possible two dimensional single lattice constant magnetic point
groups generating lattices. Black and white indicate the discrete down and up magnetized pattern according to eqn (5) that creates a universal colloidal
potential at an elevation z 4 l above the pattern. The Q1 vector is always pointing to the right in the x-direction. In (a) we show the unit cell of the two-
fold and in (b) of the four-fold symmetric pattern, and in (c) 24 smaller three-fold symmetric unit cells. The magnetic pattern of these three-fold
symmetric unit cells continuously varies with the phase f of eqn (5). We show a sequence of such cells in steps of Df = p/12 starting at f = 0 at the top.
For each case there are 3 symmetry points with C3 symmetry per unit cell. They are shown in 3 different colors (pink, yellow, cyan) in the unit cell next to
f = 0. For special values of f one of these three points acquires a proper or improper six-fold symmetry. N-Fold symmetric points of all unit cells are
marked in green for proper rotation symmetries CN and in red for improper rotation symmetries SN.
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action space are non trivial. One might guess that the non-
trivial topological classification of modulation loops in reduced
control space directly translates into the same topological
classification of induced action-loops, i.e.

w LAð Þ ¼ w LCrð Þ; for N ¼ 2: (8)

We will show that this indeed is the correct answer to
the question for the universal case. But there are other, non-
universal answers to this question. At low elevation the transport
in the two-fold symmetric potential differs from this simple
answer.

Eqn (8) does not hold in full control space, i.e. there are
loops with w LAð Þaw LCð Þ for any N. Otherwise there would not
be transport since w LCð Þ ¼ 0 for any loop. Full control space C
becomes nontrivial if we puncture it at specific points or introduce
even more complicated objects on it. The result is a constrained

control space ~C, for which the simple answer

w LAð Þ ¼ w L~C
� �

(9)

with w L~C
� �

the winding numbers around the objects of ~C holds.
The task is to find the objects that we need to project onto full
control space and figure out how winding around those objects
allows for a classification of the modulation loops into classes
that induce topologically different transport of colloids in
action space.

2.4 Computer simulations

We use Brownian dynamics to simulate the motion of a single
point paramagnetic colloid above the different patterns. The
motion of the particle is described by the stochastic differential
Langevin equation

g
dxAðtÞ
dt

¼ �rAE xA;HextðtÞð Þ þ fðtÞ;

with t the time, g the friction coefficient, and f a Gaussian
random force. The variance of the random force is determined
by the fluctuation–dissipation theorem. As usual, we integrate
the equation of motion in time using a standard Euler algo-
rithm. We always equilibrate the system before the modulation
loop in control space starts, such that the colloidal particles
always start in the minimum of the potential energy E at t = 0.

The phase diagrams of the transport modes that we present
in the next sections were initially obtained with computer
simulations and can now also be predicted theoretically.

2.5 Outline

The rest of the paper is organized as follows. In Section 3 we
treat the case N = 2. The simplicity of Cr2 allows us to visualize
many concepts that cannot be visualized for N 4 2 such as the
full dynamics in phase space. We also study the non-universal
transport for N = 2, and the connection to previous works.32–35

We outline the concept of topologically protected ratchets with
this very simple example. We then extend the treatment of N = 2
to the full control space, introducing the concept of the con-

strained control space ~C. The case N = 4 is related to the case N = 2
and is treated in Section 4. In Section 5 we analyze the case N = 3

that consists of a whole family of patterns continuously varying
with the phase f of the pattern. This includes the two special
cases, C6 symmetry (f = 0) and S6 symmetry (f = p/6). We find a
new topological transition between C6- and S6-like three-fold
symmetric lattices. Section 6 contains a discussion of the experi-
ments, a comparison to the theoretical and numerical predic-
tions, and a discussion of the results in comparison to quantum
systems. Finally Section 7 summarizes the main conclusions
concerning transport.

3 Two-fold symmetry

In this section we study the transport on top of a two-fold
symmetric pattern. We start with the universal case and sub-
sequently reduce the elevation of the colloids towards non
universal cases. This allows us to first study the transition from
topologically protected adiabatic motion towards ratchet motion,
and then to a non transporting regime.

3.1 Theory

A stripe pattern is a magnetic pattern with two-fold symmetry
(see Fig. 2a). The magnetic field of a thick (tQ 4 1, t being the
thickness of the magnetic film) pattern of stripes of opposite
magnetization �M alternating along the x direction reads:

Hp
x þ iHp

z ¼
2M

p
ln tanðQðxþ izÞÞ½ �

¼
X1
n¼0

8M

ð2nþ 1Þ2e
ið2nþ1ÞQðxþizÞ;

(10)

where Hp
a are the (real) components of the pattern magnetic

field, and in the last part of eqn (10) we have decomposed the
field into its Fourier-components. The non-universal colloidal
potential valid at any height z reads:

U = (Hp
x + Hext cosjext)

2 + (Hp
z + Hext sinjext)

2, (11)

where

Hext ¼ Hext

sinjext

cosjext

 !
; jext 2 ½0; 2p� (12)

denotes the external magnetic field lying in the reduced control
space Cr2. In the limit Qz 4 1 the pattern field is well described by

HpðQz4 1Þ ¼ 8Me�Qz
sinQx

cosQx

 !
; Qx 2 ½0; 2p� (13)

and the universal potential reads, cf. (7)

U* = 8MHext cos(Qx � jext). (14)

The over-damped Brownian motion of a colloidal particle in
the x-direction is given by

g _x ¼ weffV
@U x;jextð Þ

@x
þ fBrown (15)

where fBrown is a zero average random force fulfilling the
fluctuation dissipation theorem, g p Z the friction coefficient
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of the colloid in the liquid of viscosity Z, and the effective
magnetic susceptibility weff has a different sign for the para-
magnets and diamagnets. Since our colloidal potential is
sufficiently strong we can neglect the random force.

There are two kinds of colloidal dynamics that occur on separate
time scales, when we adiabatically modulate the direction of the
external field, which is described by jext(t). One is the intrinsic
dynamics of the colloids on an intrinsic short time scale tint

g _x tintð Þ ¼ weffV
@U x tintð Þ;jext tfixedð Þð Þ

@x
(16)

with which the colloids follow the path of steepest descent along
the slope of the colloidal potential along the x-direction towards an
extremum in U. The typical angular speed of this intrinsic motion
is of the order oint = Q

:
x p e�Qzweffm0MHext(QV1/3)2/Z; (the intrinsic

angular frequency renormalizes by an additional factor tQ o 1 for

thin magnetic films). Since the external modulation frequency
oext {oint is significantly slower this happens at fixed external field
(jext(t) = jext(tfixed)). The other timescale is an adiabatic creeping of
the colloid with the maximum/minimum of the colloidal potential,

0 ¼ �@U x textð Þ;jext textð Þð Þ
@x

; (17)

with a small velocity dictated by the much slower time scale text

of the external field modulation. Making use of the periodicity of
the pattern we wrap the Qx-coordinate into a circle of circum-
sphere 2p such that action space A is a circle. Reduced control
space Cr2 is also a circle with radius Hext and coordinate jext. The
full dynamics occurs in phase space Cr2 �A, which is the product
space of the reduced control and action space and thus a torus.

In Fig. 3a we depict the reduced phase space Cr2 �A, together
with the directions Qx of action space and jext of the reduced

Fig. 3 Reduced phase space of the two-fold symmetric system: (a) the black lines depict the locations of the domain walls separating regions of
opposite magnetization in phase space, which are two copies of control space at x = 0, p. We may use the first one as reduced control space Cr (orange).
Equally a level curve at fixed angle j (yellow) is a copy of action space. A point in phase space may be projected onto either control or action space, see
an example in panel (a) pink arrows. (b) Reduced phase space and intrinsic dynamics of paramagnetic colloids for the universal potential in the limit
Qz 4 1. The stationary manifoldsMr

� andMr
þ are depicted in green and red. The intrinsic dynamics is shown as a vector field of generalized velocities

with cyan arrows (pointing in positive x-direction) and blue arrows (pointing in negative �x-direction). Adiabatic motion of colloidal particles occurs on
the stable stationary manifold via the external modulation. (c) At a lower non universal elevation Qz = 0.4. The topology is still the same as in the universal
case. As in all the following cases we choose Hext = M. (d) Development of fences inMr

� at Qz = 0.34 and the transition towards topological protected

ratchet jumps (yellow) from the fence (border between pink and green color onMr) toward the pseudo fence (border between green and light green
color onMr) for paramagnetic particles (see Appendix A.3 for a concise definition of fence and pseudo fence). Both fence and pseudo fences onM are
projected into the same fence points in control space (border between gray and black on the domain wall). Preimages of the gray (m = 4) excess line of
control space are the two pink and two bright green lines. Preimages of the black (m = 2) part of control space are the full red and full green colored lines.
(e) Dynamics at an elevation Qz = 0.2. (f) At Qz = 0.1 fences also start to develop in Mr

þ causing ratchet jumps for the diamagnets (not shown) and

additional feeder ratchet jumps (orange) starting from Mr;isolated
� for the paramagnets. (g) Dynamics at the transition elevation Qz = 0.09 toward a non

transporting regime. (h) Phase space and dynamics at low Qz = 0.07 elevation. There are now four disconnected stationary manifolds (two of each kind)
which all have zero winding number in action space.
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control space. As indicated by the pink arrows in Fig. 3a each
point (x,jext) can be projected into the copy x = 0 of reduced
control space 0;jextð Þ ¼ PCr2 Qx;jextð Þ as well as into the copy

jext = 0 of action space ðQx; 0Þ ¼ PA Qx;jextð Þ.
Fig. 3b–h are plots of the phase space Cr2 �A at different

elevations Qz above the pattern and for an external field-
strength of Hext = M. As we will see in the non-universal case the
magnitude of Hext matters. The intrinsic dynamics, see eqn (16), is
shown as a vector field on the torus. According to eqn (16) the
trajectories move along lines of constant external field direction
jext(tfixed) = const, either in Qx or �Qx direction. Regions of phase
space with one sense of motion are colored in blue, regions of
phase space with opposite sense in cyan. Both regions are sepa-
rated from each other by the reduced stationary manifold Mr, a
line consisting of all points for which the potential is stationary
qxU = 0. A stationary point is either a minimum Qx;jextð Þ 2 Mr

þ
(red) or a maximum Qx;jextð Þ 2 Mr

� (green). The intrinsic
dynamics of the paramagnetic colloids starts at the red mini-
mum line Mr

þ and ends at the green maximum line Mr
�.

The reduced stationary manifold Mr of the universal
potential (Fig. 3b) consists of two lines: the line jext = Qx
(red) is the set of minimaMr

þ and the line jext = Qx + p (green)
is the set of maxima Mr

�. Following eqn (17) the adiabatic
creeping of the particles has to happen along the stationary
manifolds. Paramagnetic colloids will adiabatically follow the
green Mr

� line while diamagnetic ones will follow Mr
þ (red).

The simplicity of the universal stationary manifold (Fig. 3b)
thereby converts any motion in control space into similar
motion in action space. If we loop around the control circle
we also loop around the action circle and thus induce transport
by one unit vector. Both, paramagnetic and diamagnetic parti-
cles move at a fixed distance l/2. A general modulation loop LrC
in reduced control space causes an action loop LA in action
space with similar winding number wA ¼ wr

C. The particles can
stay on the corresponding manifold during the entire modula-
tion. Therefore the dynamics is completely adiabatic and thus
dominated by the external modulation.

When we lower the colloidal plane to Qz = 0.4 the manifold
Mr deforms (Fig. 3c). Eventually at Qz = 0.34, Mr

� becomes
parallel to the tangent vector of action space ex in one critical
point of Mr

�. At this critical point qxU = qx
2U = qx

3U = 0 and
therefore the point is no longer a maximum. As one further

lowers Qz an isolated section Mr;isolated
þ (pink) interrupts Mr

�.
Two fence points F r ¼ x;jextð Þj@xU ¼ @x2U ¼ 0

� �
as com-

mon borders between Mr;isolated
þ (pink) and Mr

� (bright green)
develop from the formerly closed Mr

� loop (Fig. 3d). When a
paramagnetic colloid adiabatically creeps along Mr

� via the
externally induced dynamics and reaches the fence F r it must
leave the stationary manifold, follows the intrinsic dynamics
and jumps (yellow arrow) toward a new maximum that we call
the pseudo fence PF r

� (border between the bright and full
green in Fig. 3e). A pseudo fence is a point onM different from
the fence that has the same projection onto reduced control
space (border between the black and gray line) as the fence but
different projections onto action space.

The intrinsic dynamics is irreversible, i.e. one can move
along the path of steepest descent only in one direction. When

we are at the critical elevation the Mr;isolated
þ interruption has

zero length, fence and pseudo fence fall on top of each other.
Like this the path of steepest descent has zero length. When we
decrease the elevation Qz the path of steepest descent continu-
ously grows. Although it is no longer on Mr it falls into the
same homotopy class as the section ofMr that it bypasses. That
is, both are topologically equivalent and transport by one unit
vector can still be achieved by winding around the control space.
The dynamics of the colloids, however, undergoes a phase transi-
tion from adiabatic toward a ratchet motion.36–42 The ratchet
jumps occur along the path of steepest descend with jump times
short compared to the external modulation dynamics. The result
of a ratchet transport is the same as the adiabatic motion at
higher elevations because of the homotopy between the avoided
section of Mr and the path of steepest descent. Like this the
transport is topologically protected at the adiabatic to ratchet
transition.

If we further decrease the elevation to Qz = 0.1 the same
thing happens to the other sub-manifold Mr

þ. It is now inter-

rupted by aMr;isolated
� section resulting in irreversible jumps for

the diamagnetic colloids (Fig. 3f). This section also opens up a
new possible ratchet jump of paramagnetic particles initially

located onMr;isolated
� onto the disconnected other parts ofMr

�.
The special thing about these feeder jumps is, that once a
colloidal particle leaves the isolated section it will never return

due to the absence of pseudo fences in Mr;isolated
� .

The projection of a point in Cr �A onto a point in Cr defines
a mapping from Mr onto Cr. The inverse of this map is not a
map because the projection maps several points ofMr onto the
same point in Cr. We call the number of preimages of the
projection on Mr the multiplicity. Note that, the two (bright
green) sections between pseudo fence and fence, the (pink)

Mr;isolated
þ insertion as well as a non isolated section (pink) of

Mr
þ are projected onto the same (gray) excess segment of control

space. Consequently the (gray) excess segment has multiplicity
m = 4 (it has four preimages on the manifoldMr). The rest ofMr

is projected twice on the remaining (black, multiplicity m = 2)
section of Cr2. Like this there are sections of control space with
different multiplicity. When we move from the m = 2-region of
control space to the m = 4 region a maximum minimum pair is
created inMr.

The topology of Mr does not change at the adiabatic to
ratchet transition. It is only the distribution of points on Mr

into the subsets Mr
� and Mr

þ that changes. A transition of
the topology of Mr occurs at Qz = 0.09 when the formerly
disconnected parts ofMr touch each other in four fence points
(Fig. 3g) and then separate into four disconnected parts
(Fig. 3h). Two of the new disconnected parts after the disjoining
are entirely of typeMr

� and two are of typeMr
þ. TheMr

� parts
are localized near the domain walls, while the Mr

þ parts lie on
top of a domain. All four parts ofMr have non vanishing winding
number around the reduced control space but vanishing winding
numbers around action space. Any control loop will thus only
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create periodic motion in action space that is associated with
no net transport over a period.

We have given a description of the dynamics of paramagnets.
The dynamics of diamagnets is the reversed intrinsic dynamics
coupled with the external dynamics onMr

þ. For the universal case
at high elevations both types of particles move exactly the same
way however they are separated by half the wavelength DQx = p of
the pattern. At lower elevation the transitions to a ratchet motion
occurs for different elevations Qz = 0.34 (Fig. 3d) for the para-
magnets and Qz = 0.1 (Fig. 3f) for the diamagnets. The transition
from transport to no transport happens for both particles simulta-
neously at an elevation of Qz = 0.09 (Fig. 3g). Paramagnets are then
confined to the domain walls and diamagnets to the domains.

3.2 Experiments

We have performed experiments with paramagnetic colloids above
the stripe pattern of wavelength l = 7.2 mm, and magnetization
M E 20 kA m�1 of a magnetic garnet film.43,44 We covered the
garnet film with a ferrofluid of defined thickness d. Magnetic
levitation lifts the colloids to the mid plane of the film at a fixed
elevation z. Since we were limited in the variation of the thickness
d we used the amplitude Hext of the external field as a second
control parameter. Both, decreasing the field or decreasing the
elevation renders the transport behavior non-universal. The modu-
lation of the external magnetic field that drove the dynamics was
generated by three coils arranged along the x, y, and z axes.31 We

applied a palindrome modulation loop LCr ¼ ~LCr ~LCr�1, i.e. a com-

bination of a forward loop ~LCr of winding number w ~LCr
� �

¼ 1

followed by the time reversed backward loop ~LCr�1 with winding

number w ~LCr�1
� �

¼ �1, each subloop has a duration of Dt = 5 s.

We measured the corresponding trajectories in reduced phase
space Cr2 �A at different heights. By video tracking we obtained
the coordinate xAðtÞ of the trajectory in action space. Simulta-
neously we determine jext(t) by measuring the width of an up
magnetized stripe that periodically varies with the external field
and is visualized in the same video (see ref. 45) via the polar
Faraday effect.

At the universal elevation (Fig. 4a) the colloids creep adia-
batically along the stationary manifold Mr

�. Forward (green)
and backward (olive) trajectories fall almost on top of each
other. If we lower the elevation we can observe ratchet motion
(Fig. 4b). There we can identify the sections of the trajectories
that lie onMr

� as those where the speed of the colloids on the
trajectories is slow (adiabatic) (see green data in Fig. 4b). The
paths of steepest descent are the regions where the velocity is
high (intrinsic dynamics). In the forward loop the adiabatic
motion passes the pseudo fence and the particle jumps when it
reaches the fence. The path of steepest descent reunites with
the backward trajectory at the pseudo fence. The two sections
onMr between fence and pseudo fence together with the paths
of steepest descend connecting fence and pseudo fence define
the hysteresis between forward and backward ratchet loops.
A fully adiabatic motion has negligible hysteresis.

At even lower elevations, below the topological transition
height, we no longer observe transport. The paramagnetic
particles are attached to the domain walls (Fig. 4c).

In a ratchet motion the path of steepest descent, and therefore
the hysteresis, develops continuously from the critical point. The

winding number w ~LA
� �

¼ �w ~LA�1
� �

of the forward loop does not
change across this continuous transition. In contrast, the topological
transition towards the non transporting regime is discontinuous.

Fig. 4 Reduced phase space (torus), intrinsic dynamics (vector field), stationary manifolds (green and red solid lines), and experimental trajectories
(green, olive, yellow and orange) for three different non-universal elevations. (a) Adiabatic motion in a nearly universal potential Qz = 4.34, Hext = 0.2M.
(b) Ratchet motion at an elevation Qz = 0.43, Hext = 0.2M. (c) No motion at a elevation Qz = 0.43, Hext = 0.1M below the topological transition.
Experimentally measured data for a forward (backward) modulation loop with wC ¼ 1ð�1Þ is shown as green (olive) spheres for adiabatic, i.e. slow, motion
and in yellow (orange) for the fast ratchet jumps. The ratchet motion in (b) exhibits hysteresis between forward and backward motion (yellow shaded
area). The experimental data does not perfectly match the theory (solid green line) since the changes of the stripe pattern of the garnet film with the
external field (relevant at non-universal elevation) have not been included into the theory. Both experimental data and theory however fall into the same
homotopy class. A video clip of the adiabatic motion of the paramagnetic colloidal particle in (a) is provided in ref. 45.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
6 

Ju
ly

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
 B

A
Y

R
E

U
T

H
 o

n 
14

/0
7/

20
17

 0
8:

00
:1

8.
 

View Article Online

http://dx.doi.org/10.1039/C7SM00983F


This journal is©The Royal Society of Chemistry 2017 Soft Matter

In Fig. 5 we plot the area of the hysteresis versus the non-
universality parameters (external field Hext and elevation Qz).
Both the continuous adiabatic toward ratchet transition as well
as the discontinuous ratchet to adiabatic non-transport transi-
tion can be clearly identified from the figure.

3.3 Constrained control space

In Section 4 we will discuss the universal potential of a four-fold
symmetric pattern. It is useful to first reiterate the universal
case of the two-fold symmetric problem, using full control
space C.

In the Section 3.2 we reduced the control space of the stripe
system to fields that are lying in the plane spanned by the
normal vector n to the pattern and by the unique reciprocal
unit vector Q. We just dropped the physically possible external
field component along the indifferent �n 	 Q direction. Here
we do not ignore this component. Hence, since the magnitude
of the external field Hext does not play a role for the universal
case, full control space is a sphere. The constrained control

space ~C2 of the stripe pattern is a two punctured sphere. The
two points along the �n 	 Q direction are removed from the
sphere of the full control space C since these points produce an
indifferent constant potential in action space.

Topologically, the two punctured sphere ~C2 and the circle Cr2
are equivalent. Since only the topology of control space is
important we may expand Cr2 to the constrained control space
~C2. Note that the winding number of a modulation loop in Cr2
becomes the winding number of a modulation loop around the
indifferent �n 	 Q axis through the two removed points of the

punctured sphere in ~C2. The reduced control space is just
the grand circle on the sphere around this axis. We can predict
the result of modulation loops in the constrained control space
~C2: winding around the punctured points induces transport in
action space.

To make the connection to the topologically trivial full con-
trol spaces of lattices with higher point symmetries, we can

reinsert the removed points into the punctured sphere ~C2.
That is, we recover the topologically trivial full control space
C allowing fields pointing into the indifferent direction. This
enables us to continuously deform a modulation loop with one
winding number around the axis into a modulation loop with
different winding number. The transition in winding number
occurs when the modulation loop passes through the reinserted
point.

Note that the indifferent direction satisfies

rAU� ¼ 0; (18)

and

det rArAU�ð Þ ¼ 0; (19)

for any point xA 2 A. We call points in C � A that fulfill
eqn (18) and (19) the fences F on M. For the stripe pattern
and the universal case fence points only exist in C � A, not in

C2r �A. In the stationary manifold of the reduced control space
Mr the sub-manifolds are two disconnected lines (maximum
and minimum) without fences (Fig. 3b). On the full stationary
manifold M the fence consists of two copies (one for each of
the opposite indifferent points in C) of the one dimensional
action space and thus consists of two disconnected circles.

The fences separate the maxima of the stationary manifold
from the minima (Fig. 6). Hence using the constrained control
space the stationary manifoldM is a two dimensional manifold
that is not disconnected. M� and Mþ are both copies of the
punctured sphere, with the puncture point enlarged to a circular
fence and there joined to one closed surface. Fig. 6 shows the
topology of the universal stationary manifold M for the full
control space. Mþ is depicted in red and M� in green.

The constrained control space ~C2 can be subdivided into two
hemispheres, the northern hemisphere for which Hext,z 4 0
and the southern hemisphere (Hext,z o 0). Both hemispheres
are simply connected areas, i.e. areas where every loop is zero

Fig. 5 Experimentally measured area of the hysteresis of the transport.
The area of the hysteresis is measured on the surface of the torus Cr2 �A.
The total area of a torus is (2p)2 E 40. On the right we lowered the
elevation Qz. This reveals the continuous transition from adiabatic trans-
port toward ratchet motion. On the left side we decrease the external field
amplitude at constant elevation. This reveals the discontinuous topological
transition towards no transport.

Fig. 6 The stationary manifold for the universal potential of the stripe
pattern for the full control space C.Mþ is depicted in red andM� in green.
Both are connected by two circular fences F . Copies of the northern
hemispheres of C are shown in full colors, while the southern ones are
shown in light colors. (See Appendix A.3 for a concise definition of the
hemispheres and the equator.)
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homotopic. The areas are glued together at the two sections g1

and g2 of the equator between the puncture points. In Fig. 6 we
show the simply connected areas of the stationary manifold

that are projected into both hemispheres of ~C2.
Two lines circle the stationary manifold, see Fig. 6. We call

these lines the equator since they are projected onto the

equator of ~C2, see Fig. 7a. When the equator hits the puncture

point in ~C2 the two equators of the stationary manifold cross the
fences in M. Topologically M is a genus one surface with two
winding numbers. The winding numbers of the fences are
different from the winding numbers of the equator.

Fig. 7 shows the topological transition of the transport
modes on M and A due to the continuous deformation of a
control loop in C. We start with a control loop (dark blue loop)
that is entirely in the north and hence does not wind around
the indifferent point. The loop has two preimages on M, one
on M� and one on Mþ. Both are zero homotopic. Now we
further deform the modulation loop such that it crosses the
fence point (blue loop). The preimage on M is the union of
the two formerly disconnected loops and the fence itself.
Mathematically the preimage is not a loop but a lemniscate.46

When we slightly enlarge the loop (cyan), such that it is now
winding around the fence point in C, the lemniscate on M
disjoins again into two loops onM� andMþ. Now, both loops
have non vanishing winding numbers. The projection of the
loop inM� (Mþ) corresponds to a maximum (minimum) of the
potential in A that adiabatically moves around with a winding
number similar to the winding number around the indifferent
axis in C, wA ¼ wC.

We now understand how to produce a topological transition
of the transport modes by continuously deforming the loop
in control space. The transport direction in action space is
topologically protected for any deformation of the modulation
loop that does not alter the winding number around the fence
points. A topological transition occurs when we move the loop
across one of the fence points.

We can characterize the simplest modulation loops by the
two segments of the equator that they cross. We define kgi,
i = 1, 2 as a south traveling path that passes the equator
segment gi between the two fence points. We complete the loop
with an analogous north traveling path, mg j. In Fig. 7d we depict
a phase diagram of the transport for the fundamental loops
LC ¼ # gi " gj . Modulation loops that do not cross the equator,
as well as those passing the same equator segment south and
north, cause no transport. Modulation loops passing one segment
south and the other one north induce transport.

4 Four fold symmetry

In ref. 21 we study in detail theoretically and with computer
simulations four-fold symmetric patterns. Here we summarize
the theoretical results, present experimental data, and show the
connection to the two-fold symmetric system.

4.1 Theory

The four-fold symmetric magnetic potential

c4(z,x,y) = c2(z,x) + c2(z,y) (20)

is closely related to the two-fold symmetric potential c2, where
ex points along Q1 and ey points along Q2. Action space
A4 ¼ A2 �A2 is the product space of two circles and thus a
torus with both Qx and Qy varying from 0 to 2p. There is no
indifferent direction and hence it is simpler to use full control
space C. However there exist fence-points satisfying eqn (18)
and (19). These fence points play the same role as in N = 2-case
in generating transport.

The universal scalar magnetic potential is the superposition
of two stripe potentials that separate the variables x and y
in action space. Therefore, we have four fence points on the
equator of the control space sitting in the�ex and�ey directions
(Fig. 8a).

Fig. 7 (a) Full control space of the stripe pattern. (b) Section of the stationary manifoldM and (c) its projection into action space. Several modulation
loops LC in C and their preimages LM onM and the further projections LA into A are shown. In (a) the reduced control space is shown in pink together
with a projection of a full external field Hext into the reduced external field Hr

ext is also shown. (d) Phase diagram of the transport modes for the

fundamental loops LC ¼ # gi " gj . Colored squares indicate transport, white squares indicate no transport.
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We define the unit vectors

e1 xAð Þ ¼ @1H
p

@1Hpj j; e2 xAð Þ ¼ @2H
p

@2Hpj j; (21)

where q1,2 denote the partial derivatives with respect to the two
coordinates in A. Points in A with e1 	 e2 a 0 are made
stationary by two opposite external fields20,21

H
ðsÞ
ext ¼ �

e1 	 e2

e1 	 e2j j: (22)

The two signs in (22) cause opposite curvature of U* and thus
each point in A can be made either an extremum (maximum or
minimum) or a saddle point. Hence, we can split action space
into forbidden and accessible regions (see Fig. 8c). Allowed
regions are regions of extrema and they are colored green, while
forbidden regions are regions of saddle points and are colored
red and yellow.

Each field in control space renders 4 points in action space
stationary, a maximum a minimum and two saddle-points.
Hence our stationary manifold consists of four copies of control
space (instead of two for the case N = 2). The indices of the four
sub-manifolds Mþþ, Mþ�, M�þ, and M�� correspond to a
minimum (index +) or a maximum (index �) along the

x (first index) and y (second index) coordinates. The four fence
points in control space deform into circular fences in M. The
four sub-manifolds are glued together at eight fences to form
the full stationary manifold, see Fig. 8b. The stationary mani-
fold is a genus five surface.

The fences inM are projected onto lines in action space that
are the borders between the forbidden and allowed regions.
The fences do not intersect on M but they do in A. This is
possible because the fences meet at special points in A with
e1 	 e2 = 0, that we call the gates. As we will show below, the
gates are the only points that connect two consecutive allowed
regions. From eqn (7), (21) and (22) we conclude that the gates
are rendered stationary by the whole grand circle on C around
e1 = e2. For the four-fold symmetric pattern there are four
coinciding gates gi, i = 1, 2, 3, 4 in C that run across the equator
right through the four fence points, see Fig. 8a. In C � A each
gate is a line on M that lies in a single copy of the equator of
control space and that is projected into the gate in A. Since one
gate in C cuts through all four fences the gate in A must be the
same as the intersection of fences in A.

In C the fence points cut each gate into 4 segments gi
+ +, gi

+�,
gi
� +, gi

��, that are projections of the gates in the corresponding
sub-manifolds ofM. Each gate crosses four of the eight fences

Fig. 8 (a) Top view of the four-fold symmetric control space including the fence points and the maximum segments gi
��, i = 1, 2, 3, 4 of the four gates.

(b) Genus five stationary manifoldM. Blue colors correspond to minima (Mþþ), green to maxima (M��), red and yellow to saddle points. (c) Projection of
the half of M lying closer to M�� into action space. The cut in A is the projection of the points in M separating both halves. (d) Magnetic pattern
generating the four-fold symmetric universal potential. (see Appendix A.3 for a concise definition of the gates).
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in M and passes over all four sub-manifolds. Each fence
crosses two of the four gates. The gate gi+1

ab in C coincides with
the gate gi

ab rotated by p/2. Therefore the maximum segments of
the gates gi

��, i = 1, 2, 3, 4 fill the whole equator and subdivide
C as well as all sub-manifolds Ma;b and their projections on A
into simply connected northern and southern hemispheres.
Northern and southern allowed regions touch each other in A
only at the gates. Nontrivial adiabatic transport therefore must
pass these singular points.

In the following we will first deal with the transport of
paramagnetic particles. Since these reside on the maxima of
U*, we are only interested in loops onM��. Modulation loops
that remain in one hemisphere of control space are zero
homotopic loops of the four punctured sphere and have zero
homotopic preimage loops on M. The simplest non trivial
modulation loop must cross the equator twice. Such loop
LC ¼ # gi " gj consists of two paths kgi and mg j. kgi is a path
from north to south passing the gate gi

�� and mg j is the reverse
path passing through gate gj

�� from south to north. The wind-
ing numbers in control space around the fences cause similar
winding in action space. Fig. 9 shows the phase diagram of the
transport directions of the simplest gate crossing modulation
loops. The topological transition between different transport

modes is similar to the two-fold case. Modulation loops passing
a fence cause topological transitions.

Diamagnetic particles move synchronously with the para-
magnetic ones at a fixed distance d = 1/2(a1 + a2), to the
paramagnets.

4.2 Experiments

Four fold symmetric patterns have been created by lithography.47–50

The lithographic magnetic patterns are designed to have the four-
fold symmetric pattern of Fig. 2b with a period a = 7 mm. The
strength of the pattern field directly on top of the surface of the thin
Qt o 1 lithographic film is Hp E 3 kA m�1. Details on the
production process are given in the Appendix A.2.

Lithographic edge effects of the pattern production process
render white regions larger than the black regions such that the
average magnetization of the film is non-zero. This breaks
the S4-symmetry of the pattern, but it does not affect the
S4-symmetry of the universal limit Qz 4 1 and the C4 symmetry
is preserved for the pattern and the universal limit. We coat the
patterned magnetic film with a photo-resist of thickness 1.6 mm.
The thickness is a compromise of achieving universality and
keeping the magnetic field of the pattern sufficiently strong.
Paramagnetic colloids (diameter d = 2.7 mm) immersed into
deionized water are placed on top of the coating.

In Fig. 10a we apply fundamental modulation loops. They all
fall in the class LC ¼ # g1 " g4, but have different proximity to
the fence point in the Q1 direction in C. In Fig. 10b we plot the
corresponding experimental trajectories of paramagnetic parti-
cles. No matter which particular modulation loop within the
same homotopy class we choose, the global result after com-
pleting the loop is the transport of the particle by one unit
vector a2. Modulation loops closer to the encircled fence point

Fig. 9 Phase diagram of the transport modes in a four-fold symmetric
system. Black arrows denote the traveling direction in the first, south
heading part of the modulation, gray ones describe the transport direction of
the second part, and white arrows describe the travel direction of the full
loop. The colors of the squares indicate the traveling direction. Loops passing
through the same gate twice do not induce transport (white). All other
combinations induce transport in one of the eight neighboring unit cells.

Fig. 10 (a) various modulation loops in control space of the type

LC ¼ # g1 " g4. (b) Resulting trajectories of paramagnetic colloids. All
modulation loops induce transport into the same a2-direction. (c) Trajec-
tories of a paramagnetic (thick line) and a diamagnetic colloid (thin line)
subjected to the large (red) modulation loop. Trajectories are colored in dark
red for the kg1 segment and in bright red for the mg4 segment of the loop.
Both types of particles are synchronously transported into the same direc-
tion. The trajectories however are shifted by d = 1/2(a1 + a2). The background
in (b and c) are reflection microscopy images of the four-fold symmetric
pattern. We have added the theoretical pattern to the lower part of (c) for
clarity. The length of the arrows indicating the lattice vectors is equivalent to
the lattice constant a = 7 mm. A video clip of the motion of the paramagnetic
and the diamagnetic colloidal particle in (c) is provided in ref. 45.
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have a straighter trajectory than loops passing the equator far
from it (see Fig. 10b).

In Fig. 10c we repeat the experiment with paramagnetic and
diamagnetic colloids using the largest modulation loop (red).
We immerse paramagnetic and non magnetic (polystyrene
d = 4 mm, susceptibility B �10�5) particles in ferrofluid which
renders the non magnetic particles effectively diamagnetic. The
direction of the magnetic field inside the ferrofluid is used for
the direction in control space. It has a higher tilt angle to the
film normal then the tilt of the external field applied by the
coils, because of refraction at the glass ferrofluid interface. All
loops with colloids immersed in ferrofluids are corrected for
this effect. Both particles are transported in a2 direction by
the red loop and the predicted shift of both trajectories by
1/2(a1 + a2) is clearly visible.

In Fig. 11 we show the motion of a paramagnetic particle
subject to a modulation poly-loop that consists of all sixteen
fundamental loops kgimg j of the phase diagram of Fig. 9. We
plot the fundamental sections of the trajectory of the particles

in the colors of the corresponding fundamental loops in the
phase diagram (Fig. 9). It can easily be seen that all funda-
mental loops induce the theoretically predicted transport. Due
to the lack of S4-symmetry the lemniscates of the zero homo-
topic loops in A (white) lose their inversion symmetry with
respect to the gate in A (the crossing point of the lemniscate)
resulting in a big and a tiny white loop. We conclude that the
experimental response of the particles to all modulation loops
is in perfect agreement with the theoretical predictions.

5 Three-fold symmetry

In ref. 20 we studied the motion on a C6-symmetric pattern
theoretically and provided experiments of the adiabatic motion
on this pattern. The C6-symmetric pattern is part of the family
of three-fold symmetric patterns. Here, we extend the theory to
this entire family, explain a new topological transition within
the family and corroborate the theory with experiments on
adiabatic and ratchet transport for all family members. We also
confirm experimentally the new topological transition from
C6-like toward S6-like topology.

5.1 Control space, stationary manifold and action space

The transport on the three-fold symmetric pattern is more com-
plex than on the two-fold and four-fold patterns. The increased
complexity is related to the fact that the three reciprocal lattice
vectors Q1, Q2 and Q3 are linearly dependent. In Fig. 12 we show
the control spaces, the stationary manifolds, and the action
spaces of the three-fold symmetric system for various values of
the phase f of the pattern. The phase f varies in an interval
0 r f r p/6 which covers all possible three-fold symmetries
including C6 (f = 0) and S6 (f = p/6). We call the range
p/9 o f r p/6 the S6-like case and the range 0 r f o p/9
the C6-like case. The range p/6 o fo 2p repeats those patterns,
however, centered around one of the other two three-fold
symmetric points and/or interchanging up and down magne-
tized regions, see Fig. 2c. For each value of the phase f of the
pattern the stationary manifold M in Fig. 12 is a genus seven
surface. As in the two and four-fold cases there are fences ofM
separating different sub-manifolds. We distinguish two different
fences: (i) the maximum fence F� ¼M� \M0, which is the
border between the regions of maxima of the colloidal potential
(green colors) and the saddle point regions (red colors), and
(ii) the minimum fence Fþ ¼Mþ \M0, which is the border
between saddle points and minima (blue colors).

Due to the separability of the two-fold and four-fold problem
the fences were projected onto single points in control space.
For N = 3 the fences in control space C are not points but closed
lines. In Fig. 12a the maximum fences F� are shown as green
lines and the minimum fences Fþ as blue lines in control
space. The fences in C separate regions of different multiplicity
of preimages in M. For any value of f there is one multiply
connected area (gray) that we call the tropics. This area has
multiplicity m = 4, that is, one external field renders 4 points in
action space A stationary: one maximum, one minimum and

Fig. 11 Experimental trajectory of a paramagnetic colloidal particle in
action space A caused by a modulation poly-loop in C. The poly-loop
consists of a sequence of all fundamental modulation loops in the phase
diagram of Fig. 9. The single fundamental loops are colored according to
the color in the phase diagram in Fig. 9. South traveling segments are
marked as thick lines while north traveling segments are marked as thin
lines. Consecutive loops are connected by trivial constant latitude con-
nections that remain in the north of C (black trajectories). The type of the
single loops is indicated inside the region surrounded by the trajectory. The
background is the reflection microscopy image of the underlying square
magnetic pattern. At the bottom we show a scheme of the theoretical
pattern aligned and oriented to the weakly visible experimental pattern on
the top. A video clip of the motion of the paramagnetic colloidal particle is
provided in ref. 45.
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two saddle points. In addition there are concave excess regions
of multiplicity m = 6. In the yellow regions surrounded by
F� there is an extra maximum and an extra saddle point, while
in the cyan regions (surrounded by Fþ) there is an additional
minimum and also a saddle point. The control space always shows
the C3 symmetry and the inversion symmetry U*(Hext) =�U*(�Hext),

see eqn (7). For this reason the cyan regions are the inverted yellow
regions on the opposite side of control space. A rotation of control
space by 2p/3 leaves the control space invariant. Not all excess
regions are visible in Fig. 12a. We can infer the location of
hidden excess regions from the visible excess regions using these
two symmetry operations.

Fig. 12 Topology of the three-fold symmetric case as a function of the phase f: (a) control spaces with areas of different multiplicity m = 4 (gray), m = 6
extra maximum areas (yellow) which are surrounded by the southern fence F� (green lines) and m = 6 extra minimum areas (cyan) surrounded by the
northern fence Fþ (blue lines). The gates g are colored according to their segments. (b) Genus seven stationary manifoldsM. Blue colors correspond to
minima (Mþ), red colors to saddle points (M0) and green colors to maxima (M�). Fences are the boundaries between the color families and pseudo
fences are the boundaries between the colors of one family. Areas with labeled with a prefix (n) are projected into the northern area or the northern
satellites in C, with a prefix (s) to the south, with a prefix (t) to the tropical m = 4 area of C. (c) Projection of the lower half of the stationary manifold into
action space A. The projection of the upper half exactly matches the lower projection, however, with the colors of the upper half replacing those of the
lower half. The areas 0t1 and 0t2 contain cuts (not shown) that connect the shown projection of the southern half ofM0 to its similar twin projection of
the northern half. (d) Magnetic patterns corresponding to the different phases. Up magnetized regions shown in white and down magnetized regions in
black. The pink, yellow and cyan circles mark the three high symmetry points of the lattice and the high symmetry lines connecting the points form the
12-, 23-, and 31-network. Higher resolution images ofA, C, andM for each of the phases with further details can be found in the Appendix A.1, definitions
of the various geometrical objects in Appendix A.3.
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The stationary manifold is formed from multiple copies
(according to the multiplicity) of the areas in C. As already
mentioned the two fences separate the three sub-manifolds of
M. But on M there are additional preimages of the fences
in C that are different from the fences inM. As in the two-fold
case we call these pseudo fences. The pseudo fences inM and
in A (Fig. 12b and c) are the borders between the areas with
different colors belonging to the same color family (red, green
or blue).

In the three-fold case we have an additional type of point
that we did not have in the two- and four- fold cases. They are
bifurcation points,51 located on the fences onM. These are the
only points where more than two areas of different colors meet.
We have B� (Bþ) bifurcation points where three areas on
M� (Mþ) and one area onM0 meet, and B0 bifurcation points
where three areas on M0 and one area in either M� or Mþ
meet. Both types of bifurcation points split the fences onM, as
well as their projection onto C and onto A, into single segments
(Fig. 12a).

We now consider a control loop LC that passes through a
multiplicity m = 6 excess region. When the loop crosses the
fence towards this region the multiplicity increases by two. This
happens via the creation of an extremum–saddle point pair at
the fence on M. At the same time the other preexisting
stationary points pass a pseudo fence. When the modulation
loop leaves the excess region the multiplicity returns to m = 4.
Now a extremum–saddle point pair is annihilated at the fence.
When the loop transports a paramagnetic colloidal particle, the
particle is now either adiabatically transported through the
pseudo fence or the colloid carrying maximum is annihilated at
the fence resulting in ratchet motion.

The type of transport is directly related to the number of
bifurcation points of each excess area enclosed by the modula-
tion loop. When the modulation loop in C encircles an even
number of B� (Bþ) bifurcation points of one excess area, then
the exit of the excess area corresponds to a pseudo fence on
M� (Mþ) and the transport is adiabatic. If the number of
encircled B� (Bþ) bifurcation points in an excess area is odd the
exit of the excess area corresponds to the fence ofM� and the loop
induces a ratchet. This ratchet is time reversible if the number of
encircled B0 bifurcation points is a multiple of 2 (3) for each excess
area in the S6 (C6)-like case, and non-time reversible otherwise.
A time reversal ratchet is a ratchet where the reversed modulation
results in the reversed transport direction.

5.2 S6–C6-Topological transition

The topology of the S6-like (C6-like) systems is the same as the
S6- (C6) symmetric system. A topological transition between
S6-like and C6-like occurs at a critical phase fc = p/9 of the
pattern. The topological transition can be easily seen in control
space. Control space consists of areas with different multi-
plicity. The shape and location of the areas vary with the phase
f. The topology of these areas, however, only differs for the two
situations p/9 o f r p/6 (S6-like) and |f| o p/9 (C6-like).
Fig. 12a shows examples of the control spaces C for these two
cases as well as for the critical transition value fc = p/9.

For any value of the phase f there is one multiply connected
area in control space C, the tropics (gray) having four preimages
(m = 4). In the S6-like case there are four areas (yellow)
surrounded by a maximum fence F� (green) with multiplicity
m = 6 housing an extra maximum–saddle point pair. One area is
a (hidden) southern area (opposite to the visible cyan northern
area) surrounded by a maximum fence F� with 6 segments
joined at six B0 bifurcation points. The other three are southern
satellites surrounded by a maximum fence F� with four seg-
ments joined at two B0 and two B� bifurcation points. We call
these areas southern satellites since at the topological transi-
tion they merge with the southern area. The southern area
shrinks to zero as the phase approaches f = p/6 (S6-symmetry).
Four further areas of multiplicity m = 6 (cyan) housing an
extra minimum-, saddle point pair are located opposite to the
yellow ones.

The topological transition occurs at fc = p/9 where the three
southern satellites join with the corresponding southern area.
Simultaneously the northern satellites join with the northern
area. In each satellite one B0 bifurcation point merges with one
B0 bifurcation point from the polar area. Thus the two polar
fence segments of a satellite are both unified with two fence
segments of the polar region. This results in a new topology
with only two polar areas for the C6-like case. Both areas are
surrounded by a fence with twelve segments that are separated
by a sequence of bifurcation points alternating between B0 and
B� (Bþ).

Due to the inversion symmetry U*(Hext) = �U*(�Hext) the
transport of diamagnetic particles onMþ is the same as those of
the transport of paramagnetic particles on M� at the inverted
external magnetic field. In Fig. 12b we depict the topology of
the stationary manifold for five different phases f. The true
stationary manifold is embedded in a four dimensional curved
phase space and we can only show its topology by deforming
it until it finally is embedded into three dimensions. The
deformation partially breaks the three-fold C3-symmetry, how-
ever, the inversion symmetry shows up as a up-down mirror
symmetry of the manifolds, accompanied by an inversion of the
sign of the index of the submanifolds.

In the S6-like case there is a (hidden) preimage onM of the
southern excess area of C that is entirely surrounded by M0

areas and therefore disconnected from the rest ofM�. We call

this region Misolated
� and it lies opposite to the visible Misolated

þ
region in Fig. 12b. This isolated area is surrounded by fences
and does not contain pseudo fences. Therefore, all paths of
steepest descend can only lead away from it since return points

lie on pseudo fences. For this reason the isolated areaMisolated
�

might be emptied once of a colloid but can never be refilled.
Since we are interested in the motion occurring by the periodic
repetition of modulation loops this area and hence its projec-
tion into C is completely irrelevant. After the topological transi-
tion to the C6-like case the formerly irrelevant polar areas on C
incorporate the three corresponding satellites. Hence Misolated

�
is no longer disconnected from the rest of M� and becomes
relevant for the motion.
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For any f the stationary manifold M is a genus seven
surface and there are thus 14 different winding numbers. In
the S6-like case only two linear independent winding numbers
correspond to loops LM 
M� that are lying entirely in M�.
Therefore there are only two ways of nontrivial adiabatic

transport modes. When Misolated
� joins with the other part of

M� (f = p/9) two additional windings around holes of M�
occur allowing two new transport routes through the formerly
isolated region of A.

Fig. 12c shows the projection of the lower half of the
stationary manifold into action space A. The projection of the
upper half exactly matches the lower projection, however, with
the colors of the upper half replacing those of the lower half.
Fig. 12d shows possible magnetization patterns that generate the
universal potentials U*. We also show the three-fold symmetric
points xA;1; xA;2; and xA;3 within the pattern. Their connections
form a 12-, 23-, and 31-network which are the three kinds of high
symmetry lines of the lattice.

5.3 Modulation loops in the S6-like case

As in the four-fold symmetric case, in the three-fold case two
neighboring allowed regions in A only touch each other at a
single point, the gate. Hence modulation loops in C causing
adiabatic transport in A have to pass through the grand circles
of the gates in C.

In the three-fold symmetric case there are six gates gi, gi,
i = 1, 2, 3 of two different types gi and gi. All gates inM are closed
curves dissected twice by Fþ and twice by F� (the gates on M
are shown in more detailed images ofM in the Appendix A.1 of
this work). Hence, for the projection of each gate into C there is
one minimum gate segment g+ (blue in Fig. 12a) projected from
Mþ, one maximum segment g� (green) projected fromM�, and
two saddle point gate segments g0 (red).

Whenever we cross a gate segment of type gi
� or gi,� in the

m = 4 (gray) region of C the unique maximum in A adiabatically
passes from one allowed area through the gate gi

� or gi,� in A to
the allowed area on the other side. For the S6-like case the
maximum segments gi,� of the three gates gi, i = 1, 2, 3 lie entirely
in the irrelevant southern excess region of C and are hence
unimportant for transport. For the C6-like case all six gates cross
both polar excess regions. Therefore all gates become important
for transport. Eventually if we have C6-symmetry (at f = 0) the
difference in character between both types of gates gi and gi

completely vanishes. Gates cross each other in C but inM they
do not cross. Only when we have a S6-symmetry (f = p/6) the
three gates gi of the isolated allowed region merge such that they
touch each other inM and are all projected into the one monkey
saddle point in A. Otherwise the gates are separated curves on
M much in the same way as in the four-fold case.

For the S6-like case we can characterize fundamental modu-
lation loops LC ¼# s " s0 in C by two loop segments. One is a
south heading path ks and the other is a north heading path
ms0. There are three possible types of south traveling paths. It is

either of type kgi
�, of type # F i

�l, or of type # F i
�r with i = 1, 2, 3

in all cases.

Each gate segment gi
� has two B� bifurcation points close to

it. A path of type kgi
� is a path that moves south between these

two bifurcation points. It might thereby completely stay in the
gray m = 4 area or eventually enter a southern satellite (yellow) and
exit it again via the same southern fence segment. Examples of all

types of paths are shown in Fig. 13a. A path of type # F i
�l passes

left of the two bifurcation points. It thereby has to enter the m = 6
satellite to the left of gate gi

� through one of the two upper fence
segments. The path exits the satellite via the lower right fence
segment that is also crossed by the corresponding gate segment

gi
�. A path of type # F i

�r is the equivalent path that passes right of
the two bifurcation points and enters the satellite to the right of

gate gig
�. Since the paths # F i

�l and # F i
�r are fence crossing paths

they induce ratchet motion and therefore they do not necessarily

have to cross the gate. The paths # F i
�l and # F i

�r are topologi-
cally protected by the path kgi through the neighboring gate.

Fig. 13 Paths in the southern hemisphere of C relevant for the loops in the

S6-like case. Paths of type kg1
� and mg1

� are shown in green, # F 1
�l and

" F 1l
� in red and # F 1

�r and " F 1r
� in purple. The fences of the satellites are

enumerated according to the gate closest to them. The index l (r) indicates
that the fences are left (right) of the corresponding gate and the position of
the index (subscript or superscript) indicates the location of the fence
segment in the satellite (up or down). The fence segments of the irrelevant
polar fence share the names with those segments of the satellites with
which they will join beyond the topological transition. (a) South traveling
paths for which the lower fences (highlighted) are relevant. (b) North traveling
paths for which the upper fence segments (highlighted) are relevant. See
Appendix A.3 for definitions and terminology.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
6 

Ju
ly

 2
01

7.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
 B

A
Y

R
E

U
T

H
 o

n 
14

/0
7/

20
17

 0
8:

00
:1

8.
 

View Article Online

http://dx.doi.org/10.1039/C7SM00983F


This journal is©The Royal Society of Chemistry 2017 Soft Matter

We complete the fundamental loop with a north traveling

path of type mgi
�, " F il

� or " F ir
�. A path of type " F il

� is a north
traveling path that passes left of the two bifurcation points. It
enters the satellite left of gate gi

� and exits it via the upper right
fence segment attached to the gate segment gi

� (for examples
see Fig. 13b).

In Fig. 14 we depict the phase diagram of the transport
induced by the fundamental loops LC ¼ # s " s0 for the S6-like
case. Loops for which both paths are of type g are adiabatic,
while loops containing at least one path of type F are ratchets.
Note that the transport direction is independent of how we
enter an m = 6 satellite region. We therefore do not specify the
point of entry in the phase diagram. The entry determines
whether a ratchet loop is a time reversal or non time reversal
loop. If the entry and the exit are attached to a different gate
segment the modulation loop is predicted to cause a non-time
reversal ratchet. In contrast, loops where paths enter and exit
the satellites through the fence segments attached to the same
gate are time reversal ratchet loops.

5.4 Modulation loops in the C6-like case

The C6-like case is easier than the S6-like case. There is one
single southern fence. Non trivial transport of paramagnetic
particles occurs for modulation loops that cross the southern
fence. Fundamental loops LC ¼ # s " s0 can be characterized by
the south traveling path ks through fence segment s and the
path ms0 traveling north through fence segment s0. We abbre-
viate the fence segments for the C6-like case with the names of
the segments for the S6-like case from which they developed.
The type of transport as well as the direction can also be

explained by the bifurcation points the modulation loop encloses.
The exact way the gates are crossed is still important. The gates,
however, lie in such a way that crossing a fence segment
dictates which gate the loop must pass. Hence, the fence
segments passed by the loop fully determine the transport
direction. Fig. 15 depicts the phase diagram of the transport
directions of the C6-like case. It is a checker board of adiabatic
and ratchet loops. Despite the topological transition the clus-
tering of colors and therefore directions is quite similar to the
phase diagram of the S6-like case (Fig. 14). Note that in contrast
to the S6 situation we use the same fence segments for both
directions of the modulation loops.

Due to the symmetry of the universal potential U* diamag-
netic transport can be achieved in the same way by simply
reversing the field Hext - �Hext. In contrast to the four-fold case
the transport in all three-fold cases is more versatile. Paramag-
netic and diamagnetic colloids are no longer fixed to the same
transport direction but can be transported fully independently,
because F� and Fþ are well separated in C.

5.5 Three and six fold symmetry

Let us reconsider the symmetry of the three-fold lattice. As we
have seen there are three points x1A ¼ 0, x2A ¼ a1 þ a2ð Þ=3 and

x3A ¼ � a1 þ a2ð Þ=3 in the unit cell of A with three-fold sym-
metry (see Fig. 2c). As we vary f one of these points acquires a
higher C6 symmetry at f = np/3, with n = 1, 2, 3,. . . The higher

Fig. 14 Phase diagram of the transport of paramagnetic colloids for
S6-like case. All paths (small arrows) occur on the 31-network. The terminology
of the paths is explained in Section 5.3.

Fig. 15 Phase diagram of the transport for C6-like case. Ratchets are
topologically protected by the adiabatic loop sharing the same south traveling
path. Paths occur on the 31-network (black) or on the 12-network (gray
arrows). The choice of network depends on the south heading path # F i

�.
The terminology of the paths is explained in Sections 5.3 and 5.4.
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symmetry permutes amongst the three points. Similarly, one of
the points acquires a S6 symmetry for f = p/6 + np/3. Connec-

tions between two different points xiA and x
j
A define a ij-network

that might enable transport between two unit cells. There are
three possible networks: the 12-network, the 23-network, and the
31-network (see Fig. 16a).

For a polar orientation of the external field at least one of the
three points is a minimum and at least one is a maximum. At
the S6 symmetry point the potential has a monkey saddle for a
polar external field orientation and a normal saddle point
otherwise. In any case the S6 point lies in the forbidden region.
Hence the S6 symmetry shuts off all connections to the point
with S6 symmetry. Only the network between the remaining two
symmetry points can be used for transport via appropriate
modulation loops. In contrast when the pattern acquires C6

symmetry the point with C6 symmetry is connected to both
other symmetry points via two networks. The network between
the lower C3 symmetry points is shut off.

As we vary f from 0 to 2p each network is switched on and
off twice. For any f at least one network is on and at least one
network is off. The exact number of active networks depends on
whether f is in the neighborhood of a C6 or a S6 symmetry.
In Fig. 16b we plot the symmetry of the three points and
the state of the three networks as a function of f. Note the
close relationship to an antiferromagnetic equilibrium Ising
system in a triangular lattice.52 Both systems are geometrically
frustrated, with not all possible connections between sites being
turned on.

5.6 Experiments on the S6-like symmetry

Three fold symmetric patterns with lattice constant a = 7 mm
have been created in the same way as the four-fold patterns.
Here again lithographic edge effects of the patterning process
render white regions larger than the black regions such that the

average magnetization of the film is non-zero. This breaks the
S6-symmetry and shifts the phase f o fmask of the patterns
away from the phase fmask of the lithographic mask toward the
C6-like symmetric direction.

To show the topological protection of the transport directions
in the S6-like case we apply different fundamental modulation

loops that all fall in the classes LC ¼# F 2
�r " F 3l

�; # g2 " g3, or

# F 2
�l " F 3r

� , but have different proximity to the satellite centered
at �Q1 in C. In Fig. 17 we plot the corresponding trajectories of
paramagnetic particles on a S6-like pattern. All loops induce
transport in the a2 direction, which is in accordance with the
predictions of Section 5.3. It does not matter which particular
modulation loop within the same homotopy class we choose, the
global result after completing the loop is the transport of the
paramagnetic particle by one unit vector a2. Modulation loops
closer to the encircled satellite have a straighter trajectory than
loops passing the equator far from it (see Fig. 17). For small as
well as for large modulation loops passing the equator close to
one of the southern (green) satellites, we observe the transition
from adiabatic toward ratchet motion (dashed modulation loops
in Fig. 17a). Therefore, ratchet loops are observed in a larger
region than expected from the theoretically predicted positions
of the B� bifurcation points and the fences of the satellites.
However their occurrence is topologically equivalent to the theo-
retical model. Note that passing the blue fences is irrelevant for
the motion of paramagnetic particles. The difference between
the adiabatic and ratchet motion will be shown in detail in
Section 5.7.

In a second step we immersed the paramagnetic particles
into a ferrofluid on top of the pattern and added effectively

Fig. 16 (a) Threefold unit cell with the three possible symmetry points x1

(purple), x2 (yellow) and x3 (cyan). There are three networks along which
transport is possible, the 12-network (red lines), the 31-network (blue) and
the 23-network (green). (b) State of each network as a function of the phase
of the pattern. Activated (on) networks have full colors while deactivated
(off) networks have light colors. Phases f, where one of the symmetry
points acquire higher S6 or C6 symmetry are marked by circles of the color
of the high symmetry point. Topological transitions between S6 and C6

symmetries are also marked with colored thick lines. The state of a network
can only change at the topological transition. See Appendix A.3 for defini-
tions and terminology.

Fig. 17 (a) Different modulation loops in C encircling the satellite around

�Q1. The loops fall into the three classes LC ¼# F 2
�r " F 3l

� (dashed red),

LC ¼# g2 " g3 (solid yellow, green, light green, and blue) and LC ¼# F 2
�l " F 3r

�
(dashed purple and magenta), where dashed lines are indicating modulation
loops that induce ratchets. (b) Corresponding experimental trajectories of
a paramagnetic colloidal particle on top of the S6-pattern. The (dashed)
ratchet loops fall into the same homotopy class as the (solid) adiabatic
loops and therefore the travel direction (along a2) is topologically pro-
tected. Passing blue fences is irrelevant for the motion of the paramagnets.
Note that some of the experimentally observed ratchet loops do not pass
through the theoretical green fences of control space. The background in
(b) is the reflection microscopy image of the underlaying lithographic
magnetic pattern. A video clip of the motion of the paramagnetic colloidal
particle is provided in ref. 45.
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diamagnetic particles. We subjected both types of particles to a

double loop LC ¼ L1
CL2
C consisting of two fundamental loops

L1
C ¼ # g3� " g1� ¼ # g2þ " g2þ, and L2C ¼ # g3� " g3� ¼ # g2þ " g1þ

(Fig. 18a). The first loop L1
C (blue) transports the paramagnetic

particles by the unit vector �a1. L1
C is zero homotopic for the

diamagnets since it is only crossing the same minimum seg-

ment g2
+ twice. The second fundamental loop L2

C (red) is zero
homotopic for the paramagnets and transports the diamagnets
in the different a1–a2 direction. The resulting trajectories of
paramagnetic and diamagnetic particles to the double loop LC
are shown in Fig. 18b. The double loop LC is an example of a
combination of two modulation loops that induces transport of
paramagnetic and diamagnetic particles in two independent
arbitrary directions on top of a S6-like pattern.

The experimental trajectories not only are in accordance
with the theory for the previous loops, but for all possible
fundamental loops. To experimentally show this we applied a
poly-loop for paramagnetic particles that combines all the
fundamental loops of the phase diagram of Fig. 14. In Fig. 19
we plot the experimental trajectory of paramagnetic particles
with the fundamental sections colored with the color of the
corresponding theoretical fundamental loop of Fig. 14. All
fundamental loops transport into the theoretically predicted
directions. In conclusion the experimental response of the
particles on a S6-like pattern to all shown modulation loops is
in topological agreement with the theoretical predictions. The
only phenomenon that we could not observe in our experi-
ments is a non time reversal ratchet. The reasons for this are
discussed in Section 6.

5.7 Experiments on the C6-like symmetry

The experimental trajectories of the adiabatic modulation loops
of the C6-like case are also in accordance with the theory.

Fig. 20 shows the trajectory of a paramagnetic particle subject
to an adiabatic poly-loop that consists of all different adiabatic
right fence segment crossing fundamental loops of the phase
diagram in Fig. 15 combined. We plot the trajectories of the
particles in the color of the corresponding fundamental loops
of the phase diagram. All adiabatic loops transport into the
directions predicted by the theory.

In contrast to the universal two-fold and four-fold symmetric
patterns the three and sixfold symmetric patterns not only
support adiabatic motion but also ratchet type motion can be
observed. To visualize the characteristics of the different types

of motion we use palindrome modulation loops LC ¼ ~LC ~LC�1 ¼
# F 3r " s # s " F 3r ¼ LC�1. They consist of a loop ~LC ¼ # F 3r " s
that is first played in the forward direction and afterwards played
again but this time reversed, i.e., in the backward direction.

While the first path # F 3r of ~LC is kept the same, the second path
ms varies along the eleventh column of the phase diagram

(Fig. 15). We start with (a) s ¼ F 1l which makes LC an adiabatic
zero homotopic loop and then trace the transition towards

adiabatic transport (d) (s ¼ F 2l) via two different non time

reversal ratchets (b) (s ¼ F 1
l ) and (c) (s ¼ F 1

r ). Afterwards we
show the crossover toward another adiabatic transport direc-
tion (g) (s ¼ F 2r), this time by passing a time reversal ratchet (e)

(s ¼ F 2
l ) and another non time reversal ratchet (f) (s ¼ F 2

r ).
Trajectories of these motions are shown in Fig. 21.

Fig. 18 (a) Control space C with the applied modulation double loop

LC ¼ # g3� " g1� # g3� " g3� ¼ # g2þ " g2þ # g2þ " g1þ consisting of two joint fun-

damental modulation loops. (b) Experimental trajectories of a paramag-
netic and a diamagnetic colloidal particle in action space A caused by this
loop. The result is the transport of paramagnetic and diamagnetic particles
in directions differing by an angle of 2p/3. While the first (blue) funda-
mental loop transports the paramagnetic particles it is zero homotopic for
the diamagnetic particles and vice versa for the second (red) loop. The
background is the reflection microscopy image of the lithographic magnetic
pattern. A video clip of the motion of the paramagnetic colloidal particle is
provided in ref. 45.

Fig. 19 Experimental trajectory of a paramagnetic colloidal particle on
top of a S6 pattern caused by a modulation poly-loop in C consisting of a
sequence of all fundamental modulation loops. The fundamental loops are
colored according to the loops in the phase diagram in Fig. 14. South
traveling segments are marked as thick lines. North traveling segments are
marked as thin lines. A video clip of the motion of the paramagnetic
colloidal particle is provided in ref. 45.
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Obviously, if the induced motion is adiabatic the colloidal
particle is tracing some path in A during the forward motion,
and then returns to the initial position by tracing the exact
same path in the backward direction. Three such adiabatic
paths (a, d and g) are shown in Fig. 21. All adiabatic paths are
caused by modulation loops making use of only upper type
fence crossings and cause motion on the 12-network only. In
contrast the irreversible nature of ratchet jumps causes the
colloidal particles to move on a different path in A during the
forward and backward modulation loop. The reason for this is

that the forward loop ~LC uses a south traveling path crossing an
upper type fence F 3r and a north traveling path crossing a lower

type fence. When ~LC is played forward the colloid travels the
first half adiabatically from xA;1 toward xA;2 since the modu-
lation path enters the southern excess region and upper type
fence crossings support motion on the 12-network. The second

half of ~LC must bring the particle back to xA;1. However, adiabatic
motion with lower type fence crossing paths is possible only on
the 31-network and our particle is currently at xA;2 that is not
part of this network. Hence the particle performs a ratchet

jump back toward xA;1. When ~LC is played backward the particle
adiabatically moves from xA;1 toward xA;3 and jumps back via a
ratchet jump. The full palindrome loop hence visits the high
symmetry points in the sequence: xA;1, xA;2, xA;1, xA;3, xA;1. For
time reversal ratchets the colloidal particle returns to its initial
position after the full modulation loop LC, however by using a
backward path in A different from the forward path. Such a
time reversible ratchet path is shown in Fig. 21e. In general
palindrome modulation loops cause non-time reversal ratchet
motion. The particle does not return to its initial position after
a complete modulation loop but is transported by one unit
vector. Three non-time reversible ratchet paths of this type are
shown in Fig. 21b, c, and f.

The characteristics of the adiabatic and ratchet motion can
also be inferred without looking at the differences between the
forward and backward paths in A. We measure the speed _sA of
the colloids in A versus the normalized path length sC of the
modulation loop. We parametrize the forward modulation loop
~LC from 0 to 2p and the backward loop ~LC�1 from 2p to 0 such
that the path length sC in Fig. 22 runs back and forth between
0 and 2p. Ratchet loops can be distinguished from adiabatic
loops by the ratchet jumps that have a significantly higher
speed than the adiabatic motion. These jumps occur during the
second half (magenta) of the forward and the second half
(green) of the backward modulation when the modulation hits
the fences and leaves the southern excess region in C. There are
also smaller maxima in the speed of the adiabatic motion when
the beads pass the gates. The increased gate speed is a result of

Fig. 20 Experimental trajectory of a paramagnetic colloidal particle on
top of a C6-pattern. The colloidal particle is subjected to a modulation
poly-loop in C which is a combination of all adiabatic right fence segment
crossing fundamental modulation loops. The single fundamental loops are
colored according to the loops in the phase diagram in Fig. 15. South
traveling segments are again marked as thick lines while north traveling
segments are thin lines. Similar to the theory the circular bubble domains
have positive magnetization. However the reflection microscopy image in
the background has an inverted contrast such that the bubbles are dark.
A video clip of the motion of the paramagnetic colloidal particle is provided
in ref. 45.

Fig. 21 Experimental trajectories of paramagnetic colloidal particles in
action space A above a C6-symmetric pattern. The trajectories are caused by

various zero homotopic palindrome modulation loops LC ¼ # F 3r " s # s " F 3r

with (a) s ¼ F 1l (b) s ¼ F 1
l , (c) s ¼ F 1

r , (d) s ¼ F 2l, (e) s ¼ F 2
l , (f) s ¼ F 2

r , and

(g) s ¼ F 2r. The paths in A are colored according to the four paths of the
modulation loop as indicated by the squares in the phase diagram Fig. 15.
In the cases (a, d and g) the motion is adiabatic and the colloidal path in
A consists of two forward paths that coincide with the backward path. The
case (e) corresponds to a time reversible ratchet with a zero homotopic
path in A. However the colloid is moving on different forward and back-
ward paths that belong to two different networks indicated to the right.
The other cases (b, c and f) are non time reversible ratchets where the zero
homotopic modulation loops in C induce non-zero homotopic (open)
paths of the colloids inA. The predicted paths between the high symmetry
points for all loops are shown to the right. Video clips of the motion of the
paramagnetic colloidal particle caused by the loops in (b, d and e), are
provided in ref. 45.
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the way that curves which are passing the gates in M are
projected intoA and C. The projections are causing a maximum
in the conversion of the speed in action space versus the speed
in control space at the gate. In our special case the gates seem
to be located less polar than the fences, which contradicts
the theoretical predictions for the C6-symmetric case but is in
accordance with theoretical predictions for weakly broken
C6-symmetry.

We are hence able to independently characterize the type of
motion and the particular path taken by the colloids. Both
the experimentally determined types of motion as well as the
directions are in perfect agreement with the theoretically pre-
dicted phase diagram (Fig. 15) for the C6-like case.

For the S6-like case we also observe adiabatic and ratchet
motion in topological agreement to the theory. However, we did
not succeed in finding palindrome loops causing non-time
reversible ratchets as predicted by the theory and simulations.
Instead, we observe that loops, which are supposed to induce
non time reversal ratchets, cause the coexistence of time rever-
sible ratchets with different directions above different unit cells.
The directions thereby correspond to either the theoretically
predicted forward or backward direction.

5.8 Experiments on the S6–C6-topological transition

To illustrate the S6–C6-topological transition we produced
lithographic patterns with a slowly varying pattern phase f(x).
This continuously converts a C6 pattern into a S6 pattern within
a spacial range of approximately 20 unit cells. In Fig. 23 we

show the motion of paramagnetic particles on such a phase
gradient pattern induced by two different modulation loops
(blue and red) encircling the �Q3 point. Both loops induce
transport on the S6-like pattern. However as the phase of the
pattern declines towards zero (the phase of the C6-pattern) the
encircled satellite excess region of control space moves out of
the blue loop such that the motion ceases beyond the critical
phase f o fc = p/9. The blue loop then touches the southern
fence of the C6-symmetric pattern, which is no longer sufficient
to induce transport on the C6-like pattern. The red loop fully
crosses the southern fences of the C6-symmetric pattern. There-
fore the motion of the particle persists as it enters C6-like
territory in action space A. The direction of transport is thereby
topologically protected over the transition.

Upon the transition between S6 and C6 also the state of
networks available for transport changes. While in the C6-like
pattern the 12- and the 31-networks are active the first one is
switched off in a S6-like pattern and only the 31-network is
available for transport (see Fig. 16). To experimentally demon-

strate this we apply a double loop of the type LC ¼ L12C L31
C with

L12
C ¼ # F 2

�r " F 1
�r a fundamental loop passing through the

lower fence segments (blue loop) and L31C ¼ # F 2r
� " F 3r

� (red
loop) a fundamental loop passing through upper fence seg-
ments of the C6-symmetric case as shown in Fig. 24d. For the
C6-like patterns the theory predicts an alternating use of the
12-network and the 31-network. The overall transport direction
is the same for both fundamental loops. The same double loop
converts into a LC ¼ # g2� " g1� # g2� " g1� loop for the S6-like case
where transport is only possible on the 31-network. In Fig. 24a
and b we show the motion subject to this modulation loop on
the C6-like and the S6-like patterns, respectively. Clearly the
motion of the paramagnetic particle on the C6-like pattern makes
use of the 12- and the 31-network. We observe an alternating

Fig. 22 Speed _sA in A of the colloidal motion induced by the palindrome
modulation loop (d) and (e) of Fig. 21. The speed is normalized by the
lattice constant a and the period T of one sub loop. It is plotted against the
normalized path length sC of the modulation in C ranging from 0 to 2p for
the forward modulation and from 2p to 0 for the backward modulation.
Ratchet jumps in the ratchet modulation loop (maximum speed) occur in
the second half of the forward (magenta maximum) and backward path
(green maximum) when the modulation loop leaves the southern excess
region in C via the fence. Also the adiabatic speed profile (magenta/blue/
yellow/green modulation, (d) in Fig. 21) exhibits maxima when the modu-
lation crosses the gates. But they are clearly smaller then the maxima of
the ratchet jumps.

Fig. 23 Motion of colloids in a phase gradient pattern. (a) Control space
with two modulation loops (blue and red) circulating around �Q3. We have
plotted the relevant excess satellite regions of the S6-symmetric case (red
area) and the excess region of the C6-symmetric case (green area).
(b) Scheme of the slowly varying phase pattern. The pattern is C6-like to
the left and S6-like to the right. (c) Experimental trajectories of paramagnetic
particles induced by the two modulation loops. Both loops encircle the
S6-symmetric satellite excess region and thus induce transport on the
S6-like pattern. The blue modulation loop barely touches the C6-like fence
in C which destroys the motion of the corresponding particle when it reaches
C6-like territory. The red loop in contrast fully enters the southern
C6-symmetric excess region in control space and leaves it only once.
Therefore the red trajectory persists well in to the C6-like territory. A video
clip of the motion of the paramagnetic colloidal particle is provided in ref. 45.
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transport over these two networks. On the S6-like pattern
transport happens via the 31-network only. The motion is again
topologically protected in the direction, i.e. the modulation that
before enforced the use the other network now also has to use
the 31-network into the same direction.

6 Discussion

We have seen that most of the theoretically predicted features
are experimentally robust. This ensures that colloids elevated
only a few microns above the pattern behave pretty much the
same way as predicted for universal potentials. The few devia-
tions of experiment and theory can mostly be attributed to non-
universal proximity effects. These arise from larger reciprocal
lattice vectors contributing to the colloidal potential. We have
shown, however, that higher reciprocal lattice vectors change
the position of certain transport direction transitions, but not
the topology of the problem as long as their influence is not too
strong. Experimental proofs for proximity effects have been
shown at different elevations for the two-fold symmetric pro-
blem. These effects will of course also play a role on lattices of
higher symmetry and for non-symmetric magnetic lattices where
such symmetry is broken by higher reciprocal lattice vector
contributions. For the higher symmetric patterns we did not
discuss these effects in detail and minimized them by performing
experiments at sufficient elevation above the pattern. However,
they are still visible in some experimental features. In the four-
fold symmetric experiments for example the fence point is not a
point but a finite area. Modulation loops must wind around this

larger area instead of winding around the theoretical point and
hence modulation loops can not be chosen arbitrarily small to
cause adiabatic transport.

The Bravais lattice of any periodic pattern has inversion
symmetry and thus C2 symmetry. Filling the unit cell of such a
Bravais lattice with a magnetization pattern that has no net
magnetic moment will generate a Fourier series that has
contributions from Fourier coefficients at the non zero recipro-
cal lattice vectors. The contributions from the shortest recipro-
cal lattice vectors will always have one of the universal rotation
symmetries. The symmetry can be broken by higher order
reciprocal lattice vectors. The magnetic field contribution to a
reciprocal lattice vector decays in the z-direction with the
magnitude of the reciprocal lattice vectors, which is the reason
why every transport at sufficient elevation of the order of the
period will have exactly the characteristics of one of the patterns
described in this paper. The transport remains topologically
protected also for the symmetry broken case when the breaking
of the symmetry is not too strong. There will be a topological
transition to a non-transport regime for any type of pattern if
one places the colloids close enough to the pattern. There
might be other topological transport modes for symmetry
broken patterns at intermediate elevation. These however are
not universal as they will depend on all details of the pattern,
field strength etc.

A difference between experiment and theory that cannot be
explained with non universal proximity effects is the absence of
non time reversible ratchets in the three-fold symmetric S6-like
case. There instead of non time reversible ratchets we observed
the coexistence of time reversible ratchets of different direction
above different unit cells of the pattern. We attribute those
effects to the noise of the magnetic patterns. Presumably the
net magnetization of each unit cell does not vanish as required
by eqn (6), but acquires values that might differ from one unit
cell to the next. A non vanishing magnetization acts like an
additional external field in the z-direction and therefore shifts
the satellites to the north or to the south. We may see the effect
of magnetization noise for the simple example of an addi-
tional staggered magnetization alternating between positive
and negative values in neighboring unit cells. The staggered
magnetization doubles the unit cell and therefore also doubles
the length of the fence. Each satellite becomes a double satellite
around which the fence circles twice. When we increase the
magnitude of the staggered magnetization one half of the
double satellite moves north while the other half moves south
(see Fig. 25). Let us consider a modulation loop segment (red)
that passes the unsplit double satellite on opposing segments.
We expect this loop to induce a non time reversal ratchet. When
the satellite splits the modulation loop segment will eventually
pass the upper half of the double satellite south of the two
B� bifurcation points and the lower half north of the other two
B� bifurcation points. This, however, will now cause time reversible
ratchets into different directions on one and the other half of the
larger unit cell. This is exactly what we observe in the experiments,
however, of course not in the simple staggered way predicted by our
simplified period doubled theory.

Fig. 24 Motion of paramagnetic colloids on (a) a C6 symmetric pattern
(scheme in (c)) and (b) a S6 symmetric pattern (scheme in (e)). The particles
are subject to a modulation double loop LC ¼ L12C L31

C with L12
C ¼# F 2

�r " F 1
�r

(blue loop) and L31C ¼# F 2r
� " F 3r

� (red loop) crossing different segments of

the C6-fence. (d) Control space with the combined modulation loop
consisting of two fundamental loops (blue and red) which are both encircling
the S6-symmetric excess region. We have plotted the relevant excess regions
of the S6-symmetric (f = �p/6) case (red area) and the C6-symmetric case
(green area). The induced motion on a C6-symmetric pattern is shown in (a).
Both sub-loops induce motion on different networks resulting in a trajectory
that alternately uses the 12 and the 31 network. In the S6-symmetric pattern
only the 31-network is active. Therefore the induced motion shown in (b) has
to use the 31-network during both sub-loops.
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In Fig. 22 we measured the speed of adiabatically moving
colloidal particles. Gates in control space can then be identified
by the location of the maximum speed in A. The experiments
measured the positions of the extremum segments of the gates
to lie in the m = 4 region, while the theory of the C6 symmetric
case predicts that they lie inside of the excess area in C. We have
already mentioned that there might be a mismatch between the
phase of the lithographic mask and the phase of the actual
pattern. Indeed the lithographic writing process presumably
produces a magnetization pattern with a phase that differs
from the desired phase. A phase that is slightly different from
the C6-symmetry would allow for gates in the tropics of C and
hence explain the observed deviation. Since the exact path of
the gate on M is a feature that is not topologically robust it is
conceivable that either the phase shift or proximity effects
might cause this discrepancy.

To achieve adiabatic transport our modulation loops in
control space must be modulated at an angular frequency
oext that is significantly smaller than the intrinsic angular
frequency oint p e�QzM. For the lithographic magnetic pat-
terns this restricts our modulation frequencies to oext E 0.1 Hz.
For useful applications one would have to improve the satura-
tion magnetization or the thickness of the lithographic patterns
to increase the modulation frequency. The garnet films we used
for the two-fold stripe pattern as well as for experiments on
C6-like patterns in ref. 20 allowed for the use of up to two orders
of magnitude higher modulation frequencies. The closer the
particles are to the pattern the faster we might modulate
the field, however, the less universal will be the behavior of
the transport. An elevation of roughly half the lattice constant
seems to be a good compromise that does not yet change the
topology of the transport.

We describe our ratchet as a deterministic ratchet, i.e.
thermal diffusion of particles only happens during very short
and therefore irrelevant times when the colloidal particles sit
right on the fence. This short diffusion will not lead to a
broadening distribution of transport directions as long as we
avoid the B0 points. When using modulation loops passing close
to a B0 point the particles may access the two alternative paths of
steepest descend also in the surroundings of this point. Thermal
effects broaden the fences. A transition to a thermal ratchet will
occur for temperatures where the broadened fences overlap.
Some of the topological properties might persist even then and
thus also explain the omni-directional transport observed in
such thermal ratchets.28

Comparing our system with topological crystalline insulators4–9

we note that the gates in our system are the analogues to the
Dirac-cones in the quantum systems. Gates are lying on high
symmetry points in the lattices with even C4, and C6 symmetries,
while they lie on the ij-network for the three-fold symmetric lattices.
The situation is comparable to the position of Dirac-cones lying on
high symmetry points and lines in the first Brillouin zone of
the lattices of different symmetry. As in topological crystalline
insulators their number and robustness varies based on the
symmetry of the lattice.

Comparing our driven system with Floquet topological
quantum systems10,11 we note that time dependent interactions
of Floquet topological insulators usually must wind around the
north–south axis to cause topologically non trivial behavior.
This is because the unperturbed time independent Hamilton
operator is diagonalized with respect to the z-component of the
spin respectively pseudo spin operator. Different time dependent
driving, such as THz-oscillating magnetic fields, stress modula-
tion, or modest in plane electric field modulations53 are experi-
mental ways to achieve non trivial behavior. Only perturbations
that have non commuting contributions of non-diagonalized
spin components will couple the different bands and cause non
trivial dynamics. Floquet topological insulators so far have been
investigated mainly with respect to time reversal symmetry and
particle hole symmetry protecting the topology. We are not aware
of a crystalline Floquet topological insulator, which would be the
quantum system in closest analogy to our system. Due to the
lattice symmetry in our colloidal system we have a variety of
different axes around which the perturbing external field may be
wound. The reason for this is the multi-fold lattice symmetry
that causes multiple stable points in the absence of a perturbing
external field. In contrast to the quantum systems we have a
richer variety of driving loops that can wind around alternative
points of control space.

We should also mention that the dynamics of our colloidal
system occurs in direct space not in reciprocal space. Direct
space is an affine lattice having no natural origin. Each unit cell
is equivalent to any other unit cell. Floquet topological quantum
systems operate in reciprocal space where we can distinguish the
first Brillouin zone from all the higher order Brillouin zones. For
example in a hexagonal lattice the G-point in reciprocal space
plays a different role than the K-points, while in our affine three-
fold lattice all high symmetry points are equivalent and cause

Fig. 25 Splitting of a satellite when switching on a staggered magnetiza-
tion that doubles the period, doubles the fence and doubles the multiplicity
m. The net magnetization of the two new different half unit cells shifts one
half of the satellite fence to the north and the other half to the south. As a
result a path that initially passed the fences on opposite sides of the satellites
(red arrow) now cuts the northern (southern) half of the double satellites on
the neighboring southern (northern) fence segments (blue arrow). Instead
of a non time reversal ratchet this produces time reversible ratchets with
different directions in one and the other new half unit cell.
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lattice symmetries to have different effects in our colloidal
system than in quantum systems.

Finally our system is dissipative causing irreversible relaxa-
tion processes to contribute to the dynamics. These irreversible
processes can be rendered unimportant only on the stationary
manifold via the adiabatic driving, but not on the paths of
steepest decent. This is causing the non-time reversible ratchet
processes that have no analogue in the topological quantum
systems.

7 Conclusions

Paramagnetic and diamagnetic colloids above a magnetic pat-
tern can be transported by modulating the potential with time
dependent homogeneous external fields. If such modulation
loops wind around specific points (fence points for the two- and
four-fold symmetries, bifurcation points for the three- and
six-fold symmetry) or pass through fence segments (three-
and six-fold symmetry) in control space the topologically trivial
modulation can be translated into non trivial motion of colloids.
A summary of the relevant points and segments is shown as
stereographic projection of control space for lattices of C2, C4,
S6-like, and C6-like symmetry in Fig. 26. It shows the deep
connection between symmetry and topology since all objects
are completely different for the various symmetries. The lattice
symmetry determines the transport modes, which are possible
along the primitive lattice vectors.

Modulation loops can be sorted into topologically equivalent
classes, according to their winding around those points and/or
by the sequence of segment crossings. All modulation loops

belonging to the same class induce motion in the same direc-
tion, which makes the transport very robust against perturba-
tions. Noise in the pattern only affects the less robust features
of the transport while it doesn’t alter its topological class.

On top of C2- and the C4-symmetric patterns para- and
diamagnets are adiabatically transported into the same direc-
tion. In contrast above 3-fold and 6-fold symmetric patterns
both types of particles can be transported into independent
directions and the motion happens either adiabatically or via
irreversible ratchets.

Classes of modulation loops causing transport modes into
one direction cluster around the adiabatic paths. Ratchet modu-
lation loops are topological protected by their neighboring
adiabatic loops and hence transport into the same direction.
The whole variety of possible transport is described by a set of
topological invariants, which are winding numbers around the
holes of the stationary surfaces M.

The robustness of the topological transport can be used to
transport a collection of colloids with a broad distribution of
properties, such as size-polydispersity without dispersion. This is a
clear advantage over other collective transport methods such as
thermal ratchets, external gradients and active motion. The possi-
bility of independent motion of paramagnets and diamagnets
facilitates other applications such as guiding chemical reactions
and assembly.20

A Appendix
A.1 Three fold symmetric stationary manifolds

In Fig. 27–31 we give a high resolution view of C, A, and M of
the three-fold symmetric patterns at five different values of f,
where we explain specific details in one of the figures each.
These details apply to all different phases if not stated other-
wise. The positions of the six gates in each space is explained in
Fig. 27 and remains the same throughout the rest of the figures.
In Fig. 28 we show the color coding of the areas in C as well as
the color coding shared betweenM and A. The poles of C have
2 	 6 preimages inM that all lie on the central axis ofM either
on a pole of a hemispherical cap or at the apex or base of the
three central holes. When projectingM into A the poles on the
hemispheres fall onto the three-fold symmetric points of A,
while the saddle point poles ofM0 in the three central holes are
expelled in the surroundings of xA;2. The topological transition
happens in Fig. 27. Two B0 bifurcation points (pseudo bifurca-
tion points) one from a satellite and one from a polar fence
(polar pseudo fence) annihilate when the satellite excess area
coalesces with the polar excess area at the ends of the full
(dashed) arrows. Since only the lower half of M is projected
intoA there occur two cuts in the brown and red tropical regions
of M0. The cut in M and its projection into A is shown in
Fig. 31. The cut in A circles twice around xA;2 and around xA;3
and twists each of the six times it passes a gate thereby alter-
nating between the lower half lying inside and outside the cut.
The cuts in the other figures are topologically equivalent to those
in Fig. 31. The projection of areas in M into C preserves the

Fig. 26 Stereographic projection of control space with all relevant objects
for the lattices of different symmetry. White circles are relevant for both
paramagnets and diamagnets while green fences are relevant for the para-
magnets only and blue fences are relevant for diamagnets only.
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Fig. 27 Universal topology of C, A andM for a pattern with S6 symmetry (f = p/6). We have marked the six gates g1, g2, g3, g1, g2, g3 that are projected
into the six gate points in A. OnM the upper gates g1, g2, g3 travel on the handles while the lower gates g1, g2, g3 pass through polar regions that will
become isolated in the S6-like case.
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Fig. 28 Universal topology of C, A andM for a pattern with S6-like symmetry (f = 5p/36) together with color codes for the areas of C and the shared
color codes of M and A. The coloring of the gates is the same as in Fig. 27.
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Fig. 29 Universal topology of C, A andM for a pattern at the transition from S6-like to C6-like symmetry (fc = p/9) with gates colored similar to Fig. 27.
Two B0 (pseudo) bifurcation points from two (pseudo) fences annihilate at the topological transition points at the solid (dashed) arrows where the
satellites merge with the polar excess areas.
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Fig. 30 Universal topology of C, A and M for a pattern with C6-like symmetry (f = p/18).
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Fig. 31 Universal topology of C, A andM for a pattern with C6 symmetry (f = 0). We have marked the cut in A that is the projection of the boundary
between the projected lower half of M and the upper half.
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orientation of half the areas and switches sign for the others.
Each time one passes a pseudo fence that is connected to a
bifurcation point one switches the orientation of the projection
in C. The orientation of the projection fromM into A switches
sign when we pass from one side of the gate to the other side.
The southern excess region south of the gates gi

� (gi,�) in C
switches orientation when its preimages inM� are mapped into
the bright (dark) green regions around xA;3 (around xA;2) in A.

A.2 Lithographic magnetic structures

Magnetic patterns with the desired symmetry have been created
by 10 keV He-ion bombardment induced magnetic patterning
of magnetic multilayer structures with perpendicular magnetic
anisotropy49,54 using a home-built ion source for 5–30 keV He
ions.55 First, the layer system Ti4nm/Au60nm/[Co0.7nm/Au1nm]5 with Ms

of 1420 kA m�1 was fabricated by DC magnetron sputter deposition
on a silicon substrate.56,57 The sample’s magnetic properties were
characterized by polar magneto-optical Kerr effect magnetometry,
possessing an initial coercive field of 19.5 � 0.5 kA m�1. The
magnetic domain structure was introduced by a local change of
the sample’s coercive field via 10 keV He ion bombardment through
a shadow mask with an ion fluency of 1 	 1015 Ions per cm2.
Here, the geometry of the mask coincides with the desired four-
fold symmetric, three-fold symmetric, or phase gradient pattern
with a period length of 7 mm (Fig. 2). The mask locally pre-
vents the He ions to penetrate into the layer system.54 In the
uncovered areas, however, ion bombardment leads to a decrease
of the perpendicular magnetic anisotropy and hence, the coercive
field, primarily due to defect creation at the interfaces of the
[Co/Au] multilayer structure.48,50 In preliminary experiments,
the decrease of the coercive field was characterized via polar
magneto-optical Kerr effect magnetometry and determined to
be 6.5 � 0.5 kA m�1. The shadow mask was prepared via UV
lithography on top of the sample. For this purpose, the sample
was first spin coated with a photo-resist layer of AZ nLOF 2070
(MicroChemicals, AZ nLOF 2070 diluted with AZ EBR, ratio 4 : 1)
with an average layer thickness of 2 mm as determined from
atomic force microscopy measurements. The lithographic
structure was introduced by UV exposure through a structured
chromium hard mask and subsequent development in AZ 826
MIF (MicroChemicals) to remove the unexposed parts of the
resist. After ion bombardment without external magnetic fields
applied during the process, the sample was first treated with
1-methyl-2-pyrrolidone for 24 h at 80 1C, than ultrasonicated for
1 minute and finally cleaned with acetone and isopropanol.
Due to the thickness t = 3.5 nm of the magnetic layer, which is
small in comparison to the wavelength of our structures (tQ o 1),
the pattern magnetic field on top of the lithographic pattern is
attenuated to Hp = Ms�t�Q in comparison to the value Hp = Ms of a
thick (tQ 4 1) garnet film.

A.3 Definitions

Action space: the plane z = const, where the colloidal particles
move. Due to the periodicity different unit cells can be identi-
fied with each other which folds action space into a torus.

Adiabatic motion: a motion enslaved by the external modu-
lation, possible when one preimage inM of a modulation loop
in C lies in M�.

Allowed regions: projection of the minimum/maximum sections
ofM into A.

Bifurcation points: bifurcation points on M and on A are
crossings of fences with pseudo fences. In C the bifurcation points
are cusps of the fence. Bifurcation points exist for the three- and
six-fold pattern not for the two- and four-fold pattern.

Control space: the endpoints of the external magnetic field
of constant magnitude, a sphere.

Equator: the boundary between the two hemispheres in
control space excluding fence points. The equators in M are
the preimages of the equator in C of the projection from M
onto C. The equators are relevant for the two-fold pattern, where
there are no gates.

Excess area: a connected set of points in C with higher
multiplicity.

Fence: the fence in M is the boundary between minima
(or maxima) and the saddle points on M. We use the same
names for its projection into control and action space. Fences
on M and on the torus A are closed lines. Fences on C are
points for the two- and four-fold symmetric pattern and lines
for the three- and six-fold symmetric pattern.

Forbidden regions: projection of the saddle point regions of
M into A. Allowed and forbidden regions are disjunct areas in
A for all but the two-fold patterns.

Gates: a gate in A is a crossing point of two fences in A.
Gates exist for the three-, four-, and six-fold pattern not for the
two-fold pattern. The preimage in M of a gate in A of the
projection from C � A onto A is the gate (a closed line) onM.
The projection of the gate inM onto C is the gate in C.A gate in
C is a grand circle.

Irrelevant fence: a fence that has no Bþ and no B� bifurcation
points.

Lemniscate: a preimage inM of a modulation loop in C that
is not a set of loops in M.

Modulation loop: a loop in C.
Multiplicity: the multiplicity of a point Hext 2 C is the

number of preimages Hext; xAð Þ 2 M 
 C �A mapped from
M onto Hext 2 C by the projection onto control space.

Non-time reversible ratchet: a ratchet motion that follows an
open path when playing a palindrome modulation loop.

Northern hemisphere: the northern hemisphere are simply
connected regions on C and on M with Hz,ext 4 0. A similar
definition holds for the southern hemisphere.

Palindrome modulation loop: a loop in C consisting of two
loops that are the inverse of each other.

Path: a path is a directed segment of a modulation loop.
Phase space the (multiply connected) product space of

control space and action space and thus the product of a sphere
and a torus.

Pseudo bifurcation points: pseudo bifurcation points in
M are preimages of the bifurcation points in C that are not
bifurcation points. Pseudo bifurcation points exist in three- and
six-fold symmetric patterns. Pseudo bifurcation points in A are
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the projection of the pseudo bifurcation points in M. Pseudo
bifurcation points in M and in A are located at cusps of the
pseudo fences.

Pseudo fence: a line in M different from the fence in M
that is projected onto the fence in C. Pseudo fences are closed
lines in M and A that exist for the three- and six-fold sym-
metric pattern not the universal two- and four-fold symmetric
pattern.

Ratchet motion: a motion where the adiabatic motion is
interrupted by jumps following the intrinsic dynamics.

Reduced control space: the cut of control space with the
space spanned by the single reciprocal lattice vector Q1 of the
two-fold pattern and the normal vector n.

Satellites: excess areas for the S6-like pattern that merge with
their polar parent excess area upon the topological transition to
a C6-like pattern.

Stationary manifold: a two dimensional manifold in phase
space, where the action gradient of the colloidal potential
vanishes.

Time reversible ratchet: a ratchet motion that follows a
closed path when playing a palindrome modulation loop.

12-Network: the three-fold symmetric pattern has three
different points per unit cell with three-fold rotation symmetry.
The straight lines between the first two points define the
12-network. Similar definitions hold for the 23-network and
the 31-network.
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50 M. Urbaniak, P. Kuświk, Z. Kurant, M. Tekielak, D. Engel,
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