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Abstract

We theoretically study the motion of magnetic colloidal particles above a magnetic pattern and
compare the predictions with Brownian dynamics simulations. The pattern consists of alternating
square domains of positive and negative magnetization. The colloidal motion is driven by periodic
modulation loops of an external magnetic field. There exist loops that induce topologically protected
colloidal transport between two different unit cells of the pattern. The transport is very robust against
internal and external perturbations. Theory and simulations are in perfect agreement. Our theory is
applicable to other systems with the same symmetry.

1. Introduction

Controlling the transport of colloidal particles is a requisite in several applications such as lab-on-a-chip devices
[1], drug delivery with colloidal carriers [2, 3], and computation with colloids [4].

Techniques to control the motion of colloids include the use of gradient fields [5], thermal ratchets [6-8],
liquid crystal-based solvents [9, 10], and active particles [11]. Colloidal particles are usually polydisperse in e.g.
size, mass, etc. Therefore, the transport of a collection of colloids using the above techniques results always in a
dispersion of the motion. One can avoid this by using optical tweezers [12] but at the expenses of having to move
the colloids on a one-by-one basis.

Topological protection is a promising tool to overcome these problems. If the dynamics depends only on a
topological invariant it is possible to have total control over the colloidal motion, independently of the intrinsic
characteristics of the particles. Recently, we have studied the motion of magnetic colloids above a hexagonal
magnetic pattern [13]. The system is driven by an external magnetic field. The positions of the colloids above the
pattern are given by the minima of the magnetic potential which has contributions from the static field of the
pattern and the time dependent external field. The set of stationary points of the potential form a surface in the
full phase space whose topological properties fully determine the colloidal motion. There exist transport modes
that are topologically protected and therefore extremely robust against perturbations.

The topology of the stationary surface, and hence the topologically protected transport modes, are unique
for each type of lattice. Here, we theoretically study the transport of diamagnetic colloidal particles above a
square magnetic lattice, and compare the results with computer simulations.

2. Theory

The colloids move in a plane ata distance d > a above the pattern, with a the side-length of the unit cell of the
pattern, see figure 1. A time-dependent external magnetic field Hy (¢) drives the system. The variation in time
of Hey (¢) is slow enough such that the colloidal particles can adiabatically follow the minima of the magnetic

potential at any time £. The magnetic potentialis V = — x.¢ /1o H - H, where H is the total magnetic field with
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Figure 1. Schematic top- (a) and side- (b) views of the system. The pattern is a periodic lattice of squares with diagonal length a and
alternating positive and negative magnetization perpendicular to the film, 4-m1, and —m,, respectively. A time-dependent external
magnetic field Hey, (#) drives the system. The diamagnetic colloids (orange spheres) are located at a distance d > a above the pattern.
A unit cell, square of side-length g, is highlighted with a blue-dashed line in (a). Another unit cell (top of panel (a)) is colored indicating
the allowed (green) and forbidden (red) regions for the colloids.

contributions from the square pattern and the external potential, x.; < 0 is the effective magnetic susceptibility
of the diamagnets in the solvent, and /s, is the vacuum permeability.

H can be expressed as a Fourier series with Fourier modes that decay exponentially with z. Hence, at high
elevations, z > a, the potential is well approximated by V' o< Hey(¢) - Hp(x4), where

q; . sin(q; - X4)
H,(x4) o< )| g;,sin(q; - x4 |, (1)
q cos(q; - X4)

i=

is, up to a multiplicative constant, the contribution from the magnetic pattern. Here,

(@)

i

27r( sin(27i/4) ) .
= — . , 1=1,.,4
a \— cos(2wi/4)

are the reciprocal lattice vectors of the second Brillouin zone with g = 27/a their common magnitude.
X4 = xa; + xa, with a; the basic lattice vectors of the square pattern (see figure 1), are the coordinates in action
space A, i.e, the plane above the pattern in which the colloids move. We vary Hey (t) on the surface of a sphere,

Hext = Hext (cos ¢, sin8;, sin ¢, sin 0, cos §;). 3)

The set (6, ¢,) define our control space, C, see figure 2(a). We measure 6, with respect to the zaxis and ¢, with
respect to a;. The system is driven with periodic closed loops of H (¢). There exist special loops that induce
transport between different unit cells, i.e., when He, returns to its initial position the particle is in a different
unit cell.

To understand the motion we need to look at the full phase space, i.e, the product space C ® A, with states
given by (Hex (1), X4). The stationary points satisfy V4V = 0, with V4 the gradientin .A. The set of all
stationary points is a two-dimensional manifold in C ® .4 that we call the stationary manifold, M, see
figure 2(b).

The correspondence between M and C is not bijective. Each direction of the external field is a point in C.
For each point in C (with the exception of four special points that we discuss later) there are four points
(preimages) in M, the solutions of V4V = 0. Two solutions are saddle points of V, one is a maximum, and the
other one is a minimum. In A the four points form a square of side a,/2.

The correspondence between M and A4 is also not bijective. Consider the unit vectors
&;(xa) = O;H,/|0H,|,i = 1,2.Then, apoint x, in A is stationary if the external field points in a direction
perpendicular to both €, and é,,i.e.,

él X éz

Hg?t (x4) = £Hex (4)

[& x &

The subscript (s) stands for stationary. That s, each point in .4 has two preimages (HY), x4) in M (except for
special points that we describe later).
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Figure 2. Control space C (a), the stationary surface M (b), and action space A (c). Each color in M (b) represents a bijective area, as
indicated (dark colors for northern areas and soft colors for southern areas). The solid lines are fences and the dotted and dashed lines
are gates. In C (a) the solid lines on the equator are the segments of minima of the gates and the empty circles are the fences. In A (c)
the fences are represented by solid lines and the gates by circles with arrows indicating the possible transport directions. The color of
A is given by the projection of half of M into .A. The violet dashed line in (a) is a control loop, L¢ = (g;, g,), that crosses two gates
and induces colloidal transport. The preimage loop in M__ is indicated by £ and the correspondingloop in A by L,.

o) ¢ M,

Consider now the matrix of the second derivatives of V evaluated at the stationary field

H(es)zt : alaal H(es,zt . (9182Hp

, (5)
HY), - 0,0H, HS), - 0,0,H,

VaVaVlyy, =

ext ext

which is diagonal since the mixed derivatives vanish, see (1). The stationary manifold M is the union of
submanifolds M, 3, where o () is the opposite sign of the eigenvalue of (5) with eigenvector pointing in the a,
(ay) direction. Thatis, M = M, U M;_ U M_, U M__. Hence the stable trajectories for the colloids
residein M__ (minima of V). M, , are maxima of V,and both M _and M_ , are saddle points. All the
submanifolds are topologically equivalent since each point in C has one preimage in each of the submanifolds.

The submanifolds share common borders in M that we call the fences. Any two submanifolds with one
common sign of one of the eigenvalues are glued together in M through two fences. At the fences one eigenvalue
changes its sign, i.e., the determinant of (5) vanishes. For example, M, and M_ , share two fences. Atboth
fences the eigenvalue of the eigenvector pointing along the a; direction changes its sign. The stationary field,
equation (4), points along +a, in one fence and along —a, in the other fence. Hence, in M we have four
submanifolds, and each one is double-joined to other two submanifolds. In other words, M is a genus 5 surface,
see figure 2(b).

Solving ||V, V4 V|| = 0 we can see the fences in action and control space. In C the fences are four equispaced
points along the equator, corresponding to external fields pointing along +a; and +a,, see figure 2(a). The
fences divide action space in a square lattice (length a/2) of alternating allowed and forbidden regions, see
figure 2(c) and figure 1(a). Using periodic boundary conditions .A is a torus. The allowed regions are areas of
minima of V (projection of the submanifold M__ into .A). In the forbidden areas all the stationary points are
saddle points. As we have seen, a point in .4 can be made stationary with two opposite external fields. Therefore
M, and M__ are projected into the same regions in 4. In other words, if there is a minimum of the potential
in a given point in .4 we can turn it into a maximum by just pointing the external field in the opposite direction.
M, _and M_, arealso projected into the same areas in A. In figure 2(c) we show the projection of half of M
into A (the half that contains all points closer to M__ than to M, ;) such that each area has a unique meaning.
That is, the projection of this half of M into A is bijective.

The fences cross in A at points that we call the gates since they connect two allowed regions in A. There are
four gates g, i = 1,.., 4, see figure 2(c). The gates play a vital role for the colloidal motion. To find the gates in
C we note that the fences do not cross in M but they do cross in .A. Hence, HS), cannot be unique at the gates in
A (crossing points between fences in .A). The only possibility is that &, is parallel to €,, see equation (4), at the
gates. Therefore, as HS), 1 &, &,, the gates in C are great circles. For the present square lattice the gates in C are
located on the equator. Each gate is divided in four segments, gég where o, § = =+ are again the opposite signs

3
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Figure 3. (a) Phase diagram of the colloidal motion in the plane g; — § for the fundamental modulation loops in control space

Xx/a

Lc= (g g)- The loop starts in the north of C then goes to the south using the gate segment ¢ and returns to the south trough the
segment ¢ Each color represents a transport direction. The arrows indicate which gates are crossed and in which sense. (b)
Examples of the trajectories of the colloids in A according to BD simulations for the modulation loops: (i) L¢ = (g,, &), (ii)

Le = (g &) (i) Lo = (g §)> (V) Lo = (g §),and (v) Le = (g, §)- Thesolid lines are the fences in .A. The forbidden regions
are marked with a middle red circle. The allowed regions are colored according to the phase diagram in (a). We show four trajectories,
(1)—(iv), corresponding to loops that induce colloidal transport (the initial position of the colloids is the allowed region centered at the
origin), and one trajectory corresponding to a topologically trivial control loop (v) that does not induce transport (the initial position
of the colloid is the allowed region centered at x/a = —1and y/a = —1). The magnetic pattern is also represented using white and
gray regions.

of the eigenvalues of (5). Although all gates in C are in the equator, they are rotated such that the union of four
segments with identical signs of the eigenvalues form a full equator, see figure 2(a).

The gates split C in two parts, the south (s) and the north (n), see figure 2(a). They also split each
submanifold of M in two parts M3 = Mgg UM ;},, see figure 2(b). This splitting is very convenient since

the resulting regions M%) with v = n, s are simply connected bijective areas. That s, there are no holes in M, /g

and the correspondences between M) and the other spaces (C and .A) are unique.

3. Results

We are now in a position to understand the colloidal motion. Let £ be a closed modulation loop of the external
fieldin C. L has four preimage loops in M, one in each submanifold M,, 3. Only the loop lyingin M__is
populated with colloids. This populated loop can be then projected into .4 where we can read the actual
trajectory of the colloids. Loops L that induce colloidal transport from one unit cell to another in .4 are only
those that cross at least two different gates in control space, which is equivalent to enclosing at least one fence in
C.When L crosses the segment ¢ in C, the corresponding loop that transport the colloids in A also crosses

the gate g™ Each gate in C can be crossed from the north to the south or from the south to the north, which in
A results in opposite senses. Let L = (g, g) be aloop of the external field that starts on the north of C, then

goes to the south of C crossing the segment of minima of the potential of the gate i (¢ ) and returns to the initial
pointin the north of C using the segment of minima of the gate j. An example of such aloop is represented in
figure 2(a). The phase diagram of the colloidal motion in the g; — &; plane is depicted in figure 3(a). It has been
obtained (i) theoretically by translating loops in C into loops in A using the stationary surface M and (ii) with
standard Brownian dynamics simulations. Details of the simulations are provided in the appendix. The
agreement between theory and simulations is perfect.

Loops that cross the same gate twice, i.e, Lc = (g;, &), do notinduce transport between different unit cells
(the initial and the final positions are the same). Loops that cross different gates induce transport between
nearest or second nearest unit cells. There are two possible routes for each of the nearest unit cells (see e.g.

Lc = (g, §,) and (g,, &)) and only one in the case of second nearest unit cells (e.g., Lc = (g, &)- In figure 3(b)
we show Brownian dynamics trajectories for selected modulation loops.

The colloidal transport is very robust against internal and external perturbations. The shape of L, for
example, is completely irrelevant. Only the gates that L crosses are important. In figure 4 we show the

4
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Figure 4. (a) Modulations loops in control space of type L¢ = (g;, &,)- The direction and the starting point of the loops are indicated
by arrows and filled circles, respectively. The empty circles are the fences in control space and the horizontal black line are the gates as
indicated. (b) Trajectories in action space corresponding to the loops showed in (a). The trajectories are colored according to the color
of theloops in (a). The white and gray areas indicate the magnetic pattern. The squares are the allowed and forbidden areas of action
space. The forbidden areas are highlighted with a red circle in the middle. The initial position of the colloids is the allowed area
centered at the origin.
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Figure 5. Trajectories in action space of a diamagnetic colloid under a controlloop L = (g, &;) for different values of the scaled
temperature kg T/ = 0.01 (a), 0.1 (b), and 1.0 (c). Here kg is the Boltzmann constant, and € sets the unit of energy of the magnetic
potential V. The white and gray areas indicate the magnetic pattern. The squares are the allowed and forbidden areas of action space.
The forbidden areas are highlighted with a red circle in the middle. The initial position of the colloids is the allowed area centered at the
origin.

trajectories in action space for three modulation loops that cross the same two gates, L = (g, §,), yet following
different paths. The trajectories in A differ but the starting and ending allowed regions are the same. The motion
is also robust against changes in the speed of the modulation, the thermal noise, and properties of the colloidal
particles such as size, mass, effective susceptibility, etc (see an example in figure 5). Therefore we can transport in
adispersion-free and precise way a collection of particles with a broad distribution of masses, sizes, etc.

The reason behind this robustness is that the transport direction depends only on a topological invariant,
and hence it is topologically protected. For each loop in M we can define a set of 10 winding numbers, two for
each hole of M. Sy, the set of winding numbers of the loop in M_ _, is the topological invariant. In each of the
regions of the phase diagram Sy does not vary. Alternatively we can define the topological invariant of loops in
A and C. Theloop thatliesin M_ _ is projected into aloop in .4 and C. Since M__ is topologically equivalent
to control space without the fences, C’, the correspondence between loops in M__ and (' is bijective. S¢, the set
of winding numbers of loops around the fences in ' induce corresponding winding numbers of loops around
the torus in action space (S4 = {wy, wy} with w; = 0, +1) viatheloopsin M__. Each of the eight non-zero
values of §4 corresponds to a type of transport in 4. §4 and S¢ are also topological invariants, they remain
unchanged for each type of transport, i.e, in each region of the phase diagram of figure 3(a).
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(a) Control Space (b) Stationary manifold

Fence

Gate

Figure 6. Control space C (a) and part of the stationary manifold M (b). Three modulation loops £ in control space and their
correspondingloopsin M__ and M _ are indicated by violet lines. The loops are represented with a solid (dashed) line in the north
(south) of control space and the stationary manifold. The arrows indicate the direction of the loops.

How is it possible to change the direction of transport if it is topologically protected? There are always
operations that break the topological protection. This is precisely what happens at the interface between two
transport directions in the phase diagram, see figure 3(a). At the interfaces between two different transport
modes the topological protection is lost allowing for a change in the transport mode. This occurs for modulation
loops that cross at least one of the fences in control space. In figure 6 we show an example of this process. The
loop labeled as (1) lies entirely on the north of C. That is, it does not cross gates and hence does not induce
transport between different unit cells. The corresponding loops in M lie on the northern areas of M. There is
one loop in each of the submanifolds of M. Figure 6 shows only the loopsin M__ and M _. When theloop in
C touches one of the fences (see loop (2) in figure 6) theloopsin M__and M _ join at the fence (the loops in
M and M_ alsojoin at a different fence). At this point the colloids, which follow the loop in M__, have two
alternative paths: (i) aloop that resides entirely in the north of M__ and (ii) a loop thatlies in both the north and
the south of M__ and hence induce colloidal transport between different cells. The motion is not topologically
protected in the sense that two different trajectories are possible. Next, we expand the loop in C such that it
encloses one fence in C and hence crosses two gates, see loop (3) in figure 6. In M theloopsin M__and M, _
are now disjoined and have interchanged a segment at the fence. The result is two loops that no longer reside in
the northern areas of M. Theloop in M__ winds around the holes of M inducing colloidal transport. The
direction of transport has changed with respect to the initial loop (1).

Due to the thermal noise in Brownian dynamics simulations the particles fluctuate around the minima of the
potential, exploring the neighborhood of M__in C ® 4. Hence, modulation loops in control space that do not
cross a fence, but pass close enough to it, might also be topologically unprotected, leading to two differing
transport modes in .A. How close the control loop has to be to the fence in order to be deprotected depends on
the magnitude of the thermal noise. The thermal noise effectively expand the fences in C into the surrounding
areas, and broaden the topological transition in A.

4, Discussion

We have explained the motion of diamagnetic colloids for which the effective susceptibility is negative.
Paramagnetic colloids have a positive effective susceptibility, and hence will follow the maxima of V. The
minima and the maxima of Valways comove in A separated by r = (a/2, a/2). Therefore, paramagnetic
colloids perform the same motion as diamagnets but displaced by r.

From an experimental view point, it is possible to use magnetic bubble lattices [ 14] or lithographic patterns
[15] to generate the pattern. Possible methods to levitate the colloids above the pattern consists of using a
ferrofluid solvent [13] and the deposition of a polymer layer [ 16] on the magnetic pattern.

The colloidal transport is fully determined by the topology of the manifold M, which is unique for each type
of magnetic pattern. For example, the stationary manifold of a hexagonal pattern is a genus 7 surface [13]. There,
the modulation loops in C that induce transport of colloids must cross the fences in C, which are lines instead of
points as in the present study. As a result, transport modes of hexagonal and square patterns are completely
different. In both, hexagonal and square lattices, the topological invariant in A is the set of two winding
numbers around the hole in A. This is just a consequence of the dimension of .A. Control space C neither
contains all the information. For example, in square lattices the transition between transport modes occurs for

6
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those loops that cross a fence. However, in hexagonal lattices, a fence crossingloop in C is a necessary but not
sufficient condition to change the transport mode. What fully determines the transport modes is the stationary
manifold M (the topology, the fences, and how M is projected into .A and C). In M the topological invariant is
the set of winding numbers around the holes, which is very different in square (M has genus 5) and hexagonal
(M has genus 7) lattices.

The topologically protected transport modes we have shown here can be understood as bulk modes
sustained (driven) by an external field. The transport occurs in the bulk of the periodic system. Other forms of
topologically protected motion occur at the edges of a periodic system, such as e.g., the motion of electrons in
topological insulators [17], mechanical solitons [18-20], phonons [21], and photons [22, 23] among others.
There, a perturbation populates an edge state that cannot scatter into the bulk due to the topology of the system.
Our theory is transferable to other systems with the same symmetry. Hence, topological bulk states might exist in
e.g. excitons in superlattices [24, 25], tight-binding models [26], and cold atoms in optical lattices [27].
Topologically protected edge states might also occur at the borders of finite magnetic lattices. Their topological
properties might be substantially different from those of bulk states. How the edge states in our particle system
compare to other edge states in wave systems is a very interesting subject for future studies.

In wave systems, such as e.g. topological insulators, the topology of the band structure is characterized by the
Chern numbers of the bands. Each Chern number can be computed as an integral over the Berry curvature of the
band [28]. In our particle system we describe the topological protection in terms of the stationary manifold. Both
descriptions are probably equivalent in some form.
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Appendix. Brownian dynamics simulations

We use Brownian dynamics to simulate the motion of a diamagnetic colloid above the pattern. The coordinates
in action space are x4, and the equation of motion is given by

¢ doxa(t) _
dt
where tis the time, £ is the friction coefficient, and 7 is a Gaussian random force with a variance given by the
fluctuation-dissipation theorem. The magnetic potential V' has contributions from the external field H, and
the magnetic pattern (see the main text).
The equation of motion is integrated in time with a standard Euler algorithm:

x4(t + At) = x4(t) — V4 VAL + Or, (A1)

—VAV(XA, Hext(t)) + ’17(1'),

where At is the time step, and dr is a random displacement sampled from a gaussian distribution with standard
deviation /2Atks T /€. Here ky is the Boltzmann constant, and T'is absolute temperature. Before starting the
modulation loop in C we first equilibrate the system by running 10* time steps such that the colloids find the
minimum of the magnetic potential att = 0.
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