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Supplementary Figure 1. Borders of control space. The borders of control space are the projections of the fences. Each
border contains 12 segments that we label from 0 to 11 as indicated. The projection of F0+ (F0−) is the northern (southern)
border and separates the tropics from the north (south) of C. Empty circles are projection of triple zero bifurcation points.
Empty squares in the northern (southern) border indicate the projection of triple plus (minus) points.



Supplementary Figure 2. Stationary surfaceM. A plaster model of the stationary surfaceM. Each color is a bijective area.
The green (blue) areas represent M+ (M−). The remaining areas (earth color tones) form M0. The black and white lines
separating two different areas represent segments of fences or pseudo fences. The color of the line indicates whether the segment
is odd (white) or even (black). The stationary manifoldM is actually a two-dimensional surface in the four-dimensional curved
space C ⊗A that cannot be visualized. We can however embedM in a Cartesian three-dimensional space, as the figure shows.
Both, the real M in C ⊗ A and the model shown in the figure are topologically equivalent. That is, both can be continuously
deformed into each other.



Supplementary Figure 3. Neighbouring areas in M. The top-most row indicates a segment of a fence or a pseudo fence
in M. The left-most column is a list of the bijective areas involved in the motion of diamagnets. The inner cells indicate the
neighbouring bijective areas. For example, the neighbour of t+ in segment 1 is n+2. This is a segment of a pseudo fence since
both areas t+ and n+2 are on M+. The neighbour of n+1 in segment 9 is n02. In this case the segment belongs to the fence
F0+ since it separates areas onM0 andM+. A similar table can be constructed for the bijective areas involved in the motion
of paramagnets.
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Supplementary Figure 4. Topological transition of the transport direction. Ratchet modulation loop (a) LC = (1N, 2N),
(b) passing through the projection of a B0 bifurcation point, and (c) LC = (1N, 3N) (top panels) and their corresponding path
of steepest descend connecting points in M (bottom panels). (a) The accessible path of steepest descend (Pl) connects the
annihilation and return sites. The annihilation site is a preimage of the point where LC crosses from the north to the tropics
in C. Another preimage of the same point is the pseudo annihilation site, which is also connected to the return site through
the path of steepest descend Pr. However, Pr is inaccessible because it develops from M0. Both Pl and Pr are in C ⊗ A, not
in M. They lie on opposite sides of the hole of C ⊗ A, and hence induce transport in different directions. (b) The modulation
loop passes through the projection of B0. The annihilation site has moved (red arrow) along the segment 2 of the fence toward
the B0 bifurcation point. The return site has moved (green arrow) along the segment 2 of the pseudo fence in M+ toward
the pseudo bifurcation point. The pseudo annihilation site has moved (yellow arrow) along the segment 2 of the pseudo fence
in M0 toward the B0 bifurcation point. Hence, the annihilation and the pseudo-annihilation site merge at the B0 bifurcation
point. Both paths of steepest descend Pl and Pr are at this point accessible and they are topologically distinct. Following one
path of steepest descend and returning in opposite direction via the other defines a non-zero homotopic loop that winds around
a hole of C ⊗A. For this LC two ratchets with different directions coexist. (c) LC encircles the projection of B0, and hence the
former annihilation site in (a) has moved along the segment 3 of a pseudo fence inM0, changing to a pseudo annihilation site.
Its corresponding path of steepest descend Pl is now inaccessible. The other path Pr is now accessible, changing the transport
direction.



SUPPLEMENTARY NOTE 1

Total external field. The pattern is a hexagonal lattice of bubbles with positive magnetization M immersed in
an extended domain of negative magnetization −M . The domain walls between regions of opposite magnetization
are very sharp. To obtain the total magnetic field H we solve the Laplace equation ∆H = 0 subject to the boundary
conditions:

H(xA, z →∞) = Hext

Hz(xA, z = 0) = m(xA), (1)

where the local magnetization m(xA) is given by

m(xA) =

{
+M if xA ∈ bubble
−M if xA /∈ bubble.

(2)

The solution, given as a Fourier series, is:

H(xA, z) =

(
H
||
ext

H̃z
ext

)
+ 2(M̃ + H̃z

ext)

∞∑
n=0

n−1∑
m=0

′
J1(qnmR)

(qnmR)2
e−(qnmz)

6∑
j=1

(
Rj
π/3 · qnmR sin(Rj

π/3 · qnm · xA)

qnmR cos(Rj
π/3 · qnm · xA).

)
(3)

The presence of the ferrofluid renormalizes the magnetization and the z component of the external field, M̃ =
M/(1 + χ) and H̃z

ext = Hz
ext/(1 + χ). In the above expression J1 is the order one Bessel function of the first kind,

qnm = nq(1) +mq(2) is a reciprocal lattice vector with reciprocal unit vectors

q(1) =
2π

a sin(π/3)

(
cos(π/6)
− sin(π/6)

)
q(2) =

2π

a sin(π/3)

(
0
1

)
. (4)

qnm denotes the magnitude of qnm. The radius of the magnetic bubbles can be found by matching the magnetic
flux at z = 0 and z → ∞, the result is R = a

√
(Hz

ext/M + 1) sin(π/3)/(2π), with a the period of the hexagonal
lattice. The prime at the double sum in Supplementary Eq. (3) denotes the exclusion of the zero reciprocal vector
(n = m = 0) of the first Brillouin zone from the sum. Rπ/3 is a rotation matrix that rotates all vectors by π/3 in the
plane.

The Fourier modes decay exponentially as one moves away from the garnet film surface. At the elevation of the
colloids only the leading order reciprocal lattice vectors of the second Brillouin zone (n = 1,m = 0) are needed for an
accurate description of the field. The magnetic field at high elevations is therefore given by

H(xA, z >> 0) ≈

(
H
||
ext

H̃z
ext

)
+ 2(M̃ + H̃z

ext)
J1(q2R)

(q2R)2
e−(q2z)

6∑
i=1

(
q2i sin(q2i · xA)
q2 cos(q2i · xA)

)
, (5)

where the sum runs only over the six reciprocal lattice vectors of the second Brillouin zone

q2i
=

2π

a

(
− sin(2πi/6)
cos(2πi/6)

)
, i = 1, .., 6, (6)

and q2 = 2π/a. The colloids follow the magnetic potential Vm = −χeffµ0H
2. We use the unique scaled-potential

V = H2 to describe the motion of both diamagnets and paramagnets. At high elevations, the leading (not constant)
term of V is given by

V ∝
6∑
i=1

(
H
||
ext

H̃z
ext

)
·
(

q2i
sin(q2i

· xA)
q2 cos(q2i

· xA)

)
. (7)


