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I.  Introduction

Patchy colloids interact via a very directional, valence lim-
ited potential. To achieve this, the surface of the colloids is 
patterned with bonding sites or patches. By playing with the 
number, type, and specific shape of the patches it is possible to 
find a remarkable variety of new phenomenology not present 
in colloidal particles interacting via isotropic potentials. 
Examples are empty liquids [1–3], reentrant networks [4, 5], 
and self-assembly into complex structures [6–8].

Patchy colloids form reversible bonds between bonding 
sites if two sites are close enough. Typically, the patches are 
always activated in the sense that they are always available to 
form bonds with the surrounding patches. It is possible, how-
ever, to design patchy colloids in such a way that the patches 
can be deactivated under some circumstances. For example, 
in [9] Sciortino et al studied theoretically a mixture of large 
patchy colloids with four patches of type A and small colloids 
with only one patch of type B. Patches of type A can form 
bonds with patches of both types A and B. Bonds between two 
patches of type B are not allowed. The AB bond is stronger 
than the AA bond. As a result at low temperatures the system 
maximizes bonds of type AB, which in practice is equivalent 
to breaking the connectivity of the system via deactivation of 
bonds AA. At intermediate temperatures the entropy plays 
a major role and the system forms a gel-like structure. In a 
recent work, Roth [10] et al used patchy particles to model 

proteins. The patch–patch interaction is mediated by ions that 
activate the patches. A bond between patches is possible only 
if one, and only one, of the patches is occupied by an ion. The 
phase diagram shows a reentrant condensation as function of 
the concentration of ions since all patches are deactivated if 
the concentration of ions is either very low or very high.

A possible route to experimentally fabricate bonding sites 
activated by temperature consists on using colloids with 
patches made of complementary strands of DNA [11]. The 
patches are active only at temperatures below the melting 
temperature of the DNA. The melting temperature depends, 
among other factors, on the DNA sequence. Therefore, by 
using patches coated with distinct DNA sequences one might 
fabricate complex patchy colloids with distinct activation 
temperatures. This method has been used in [12] to design 
a multistep self-assembly in isotropically DNA-coated col-
loids. Also, in [13] a binary system of DNA-coated colloids 
was investigated using Monte Carlo simulation. Each species 
is coated with two different DNA strands that are designed 
such that the binary system exhibits reentrant melting. That is, 
there is a fluid state at high and low temperatures, and a crystal 
at intermediate temperature.

Motivated by the possibility of (de)activating patches, 
we introduce a new model of patchy colloids in which the 
patches can be either activated or deactivated by changing the 
temperature of the system. We find a very rich phase behav-
iour including lower critical points and reentrant percolation.
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II.  Model and theory

The patchy colloids are modelled by hard spheres of diameter 
1σ = , representing a hard colloidal core, and small spheres 

of diameter δ located on the surface of the hard cores that 
play the role of bonding sites or patches, see figure 1(a). The 
patches can be either activated or deactivated by decreasing 
the temperature T. That is, two patches interact if they overlap 
(square well potential) and the temperature is below (temper
ature activated patches) or above (temperature deactivated 
patches) a given threshold. To model this behaviour we intro-
duce a temperature dependent interaction potential between 
two patches:
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where 1=ε  sets the unit of energy, Ta is the activation or deac-
tivation temperature, and τ controls the width of the activation 
(or deactivation) region. The parameter ξ is either 1 or  −1. In 
the former case the interaction between patches is deactivated 
by decreasing the temperature below Ta, whereas in the latter 
the interaction is activated by decreasing the temperature 
below Ta. Illustrative examples of the potential are shown in 
figure 1(b).

We use Wertheim’s first order perturbation theory to study 
the thermodynamics of the system. Wertheim’s theory has 
been successfully applied, as compared to computer simula-
tions, to the same model in the case of ‘athermal’ patches, that 
is patches for which the interaction potential is independent of 
the temperature. We, therefore, expect a similar level of agree-
ment in the present case. A detailed description of Wertheim’s 
thermodynamic perturbation theory for pure fluids can be 
found e.g. in [14–18]. The Helmholtz free energy per particle fH  

contains two contributions: the free energy of a reference 
system of hard spheres fHS, and a perturbation accounting for 
the interactions between bonding sites fb:

f F N f f/ ,H HS b= = +� (2)

where N is the total number of colloids. As usual, the free 
energy of a system of hard spheres can be expressed as the 
sum of the ideal-gas contribution and the excess part which 
describes the excluded volume effects: f f fHS id ex= + . The 
ideal-gas free energy per particle is given exactly by

f ln 1idβ η= −� (3)

where kT 1( )β = −  with k the Boltzmann constant, and η is 
the total packing fraction. vsη ρ= , with ρ the total number 
density and v /6s

3π σ=  the volume of the hard sphere. In the 
above expression we have set the, irrelevant, thermal volume 
equal to vs. The excess part accounts for the excluded volume 
between the hard cores of the colloids. We use the well-known 
Carnahan–Starling equation of state [19]:
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Within Wertheim’s first-order perturbation theory the bonding 
free energy per particle is given by [18]

f N X
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where Np is the number of patches per colloid and X is the prob-
ability that a bonding site is not bonded. The probability X is 
related to the total density through the mass-action equation:

X
N X

1

1
.

pη
=
+ ∆� (6)

The parameter ∆ characterises the bond between two bonding 
sites, and can be written as

Figure 1.  (a) Schematic representation of the particles: hard spheres of diameter σ = 1 with N patches of diameter δ = 0.119 on the 
surface. (b) Absolute value of the interaction potential between two patches as a function of the temperature in the case of patches 
activated by temperature (top) and patches deactivated by temperature (bottom). In both cases we illustrate the potential for two activation 
temperatures Ta, as indicated. The width of the activation region is in all cases τ =ε/ 0.01.
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with g rHS( ) the pair correlation function of the reference fluid 
of hard spheres. The integral in the above expression is cal-
culated over the bond volume vb. Wertheim’s theory assumes 
that each site can be involved only in a single bond and that 
two particles can form single bonds between them (no double 
bonds between two colloids are permitted). Both condi-
tions are satisfied by geometrical constrains if one chooses 
a patch size δ σ= 0.119  which results in a bonding volume 
v 0.000 332 285b

3σ= , see [20] for details. Next, we approxi-
mate the pair correlation function by its contact value. Within 
this approximation

β η∆ = − −
v

v
V T Aexp 1 ,b
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In addition to the thermodynamics of the system, we also 
study the percolation behaviour. To this end we use the well-
known Flory–Stockmayer [21–23] theory of polymerization, 
according to which the system is percolated if the probability 
of finding a patch bonded, given by 1  −  X, is higher than the 
threshold:

p
N

1

1
.

p
=

−� (10)

The theory assumes a tree-like cluster structure with no closed 
loops. It is, therefore, consistent with Wertheim’s first order 
perturbation theory, in which graphs with closed loops are 
not included in the Mayer expansion. The theory predicts a 
percolation threshold in good agreement with simulations for 
systems with temperature independent patches. We expect a 
similar level of agreement in the present model.

III.  Results

III.A.  Athermal patches

We first show, as a reference, the behaviour of a system where 
all the patches are ‘athermal’ in the sense that the interaction 
potential between two sites does not depend on the temper
ature. The energy of the system decreases by a fixed quantity 
ε whenever a bond is formed, independently of the temper
ature. This system has been extensively studied by theory 
and simulation [20]. The phase diagram is shown in figure 2 
in the plane temperature versus packing fraction for particles 
with three and four patches. Below a critical temperature, 
the system exhibits coexistence between two fluids with dif-
ferent densities and fractions of bonded patches. The perco-
lation line intercepts the binodal on the low-density phase. 
Hence, the high density phase is always percolated. It is 
often called a network fluid. The phase behaviour resembles 
that of ‘adhesive’ hard spheres with isotropic short-range 
attraction [24].

For particles with three or more patches the phase diagram 
is qualitatively the same. The main difference is the size of 
the two-phase region. It shrinks by decreasing the number of 
patches. Particles with only one patch tend to form dimers 
and fluid–fluid phase separation is absent. Particles with two 
patches tend to form chains. The absence of branching in this 
case prevents the fluid from phase separating.

Next we study the case of thermal patches, with an interac-
tion potential given by equation (1).

III.B. Thermally activated patches

In figure 3 we show the phase diagram (temperature-packing 
fraction plane) of a system with three thermally activated 
patches with activation temperatures kT / 0.09a =ε , 0.07 and 
0.05. That is, the patches are active only at temperatures 
below the activation temperature. The width of the activa-
tion region is in all cases k / 0.01τ =ε . As a reference, we also 
show the case of athermal patches (kT /a →∞ε ). The topology 
of the phase diagram remains the same, independently of Ta. 
There is a phase coexistence between a low-density, mostly 
nonpercolated, fluid and a percolated, high-density fluid. The 
activation temperature determines the position of the critical 
point, which is located at temperatures slightly lower than Ta 
(provided that Ta is lower than the critical temperature of the 
system with athermal patches). The percolation line is also 
affected by the activation temperature, as no percolated states 
are present at temperatures above the activation temperature.

III.C. Thermally deactivated patches

We depict in figure 4 the temperature-packing fraction phase 
diagram of a system with three identical patches deactivated 
by temperature for two distinct deactivation temperatures: 

Figure 2.  Reduced temperature-packing fraction phase diagram 
of a single component fluid of hard-spheres with three and four 
athermal patches, as indicated. The solid curves are the binodal 
lines. The grey areas are the two-phase regions. The critical 
points are represented by empty circles. The dashed lines are the 
percolation lines.
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kT / , 0.07,a ε  and 0.05. Patches are active at temperatures below 
Ta. In both cases the deactivation temperature is below the 
critical temperature of a system with three athermal patches, 
and the width of the activation region is k / 0.01τ =ε . The 
phase diagram exhibits a closed two-phase region bounded by 
upper and lower critical points. The temperature of the lower 
critical point can be controlled by varying the deactivation 
temperature.

The system exhibits reentrant behaviour in both the high- 
and the low-density fluid phases. The percolation line col-
lapses with the binodal close to both critical points, giving 
rise to a region of intermediate temperatures where the system 
is percolated. It is therefore possible to obtain the sequence 
nonpercolated-percolated-nonpercolated by lowering the 
temperature at constant packing fraction.

III.D.  Mixture of activated and deactivated patches

Next we show an example in which each particle contains 
three temperature activated patches kT / 0.05a =ε  and three 
temperature deactivated patches kT / 0.07a =ε . To simplify 
the model only patches of the same type interact, that is, 
interactions between patches activated and deactivated by 
temperature are forbidden. The phase diagram is depicted 
in figure 5. Only three patches are activated at high temper
atures, and only three are activated at low temperatures. 
There is a region, at intermediate temperatures, in which no 
patches are activated. As a consequence the phase diagram 
consists of two disconnected regions of phase separation. 
At high temperatures we find a closed loop of immiscibility 
bounded by upper and lower critical points, whereas at low 
temperatures there is a large two phase region bounded by an 

upper critical point. The high density fluid is percolated in 
the ranges of temperatures where the patches are activated. 
The intermediate region of temperatures, where no patches 
are activated, is nonpercolated. Hence, there is reentrant per-
colation, allowing the sequence percolated-nonpercolated-
percolated-nonpercolated by increasing the temperature at 
fixed packing fraction.

Figure 3.  Reduced temperature-packing fraction phase diagram of a 
single component fluid of hard-spheres with three patches activated 
by temperature. The solid curves are the binodal lines. The grey 
areas are the two-phase regions. Dashed lines are the percolation 
lines. The critical points are represented by empty circles. Shown 
are four different cases corresponding to different activation 
temperatures: →∞εkT /a  (athermal patches), 0.09, 0.07, and 0.05. In 
all cases the width of the activation region is τ =εk / 0.01.

Figure 4.  Reduced temperature-packing fraction phase diagram 
of a single component fluid of hard-spheres with three patches 
deactivated by temperature. The solid curves are the binodal lines. 
The grey areas are the two-phase regions. Dashed lines are the 
percolation lines. The critical points are represented by empty 
circles. The two different cases correspond to distinct deactivation 
temperatures: =εkT / 0.07,a  and 0.05. In both cases τ =εk / 0.01.
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of a single component fluid of hard-spheres with three temperature 
activated =εkT / 0.05a  and three temperature deactivated 
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IV.  Discussion and conclusions

We have focused on the bulk properties of a model with 
temperature dependent bonding sites. There are in the litera-
ture several works that extend Wertheim’s theory to inhomo-
geneous situations. For instance, in [25] Segura et al used the 
weighted density functional theory of Tarazona [26] to treat 
the excess part of the reference fluid of hard spheres, and 
extended the homogeneous bonding free-energy, see (5), by 
using:

F N X
X

r r r r
r

d log
2

1

2
b p[ ( )] ( ) ( ) ( )  ⎜ ⎟

⎛
⎝

⎞
⎠∫β ρ ρ= − −� (11)

where Fb is now a free-energy functional of the one body den-
sity r( )ρ  which depends in general on the spatial coordinates r. 
In [27] Yu and Wu treated the reference hard sphere fluid with 
the original Rosenfeld fundamental measure theory (FMT) 
[28] and wrote the free energy of bonding in terms of the 
weighted densities of FMT. Both approaches were originally 
used to study a system of hard spheres with four associating 
sites in contact with a hard wall. In both cases there is a good 
agreement, even quantitative, with computer simulations. 
Similar approaches have been used to study e.g. the liquid–
vapour interface [29] and the confinement in slit-pores [30] 
of two models of patchy colloids that show reentrant phase 
behaviour in the bulk.

These extensions of Wertheim theory to inhomogeneous 
situations are a valuable tool and provide an accurate descrip-
tion of systems where the bonding sites are isotropically 
distributed, i.e. there is no preferential orientation of the par-
ticles. Sciortino et al used both density functional theories to 
study hard spheres with three bonding sites in contact with 
a hard wall [31] and compared the results to Monte Carlo 
simulations. At high temperatures both approaches provide a 
good description of the system. At low temperatures, a regime 
where the energy of bonding dominates, the simulations 
show a desorption of particles close to the hard wall followed 
by an incipient layering structure. If the temperature is low 
enough the system decreases the free-energy by maximizing 
the number of bonds. As the wall is neutral, the particles next 
to the wall orient themselves moving their patches away from 
the neutral wall. As a result, the orientational order close to the 
wall is no longer isotropic. Both density functional approaches 
fail to describe the low temperature regime since the orienta-
tion of the particles is not taken into account by the theory. 
Therefore, simple extensions of Wertheim’s theory to inho-
mogeneous situations, such as equation (11), should be used 
with caution as they provide an accurate description only if 
the orientational order of the particles is irrelevant. In practice 
this may be case if the system under consideration meets at 
least one of the following criteria: (i) highly symmetric patch 
distributions (like four patches tetrahedrally distributed on the 
surface of a sphere), (ii) high temperatures, (iii) low densities 
where only fluid phases are involved.

In a recent work Marshall and Chapman [32] have devel-
oped the first density functional that goes beyond the single 
bond condition of Wertheim’s theory. The results are in excel-
lent agreement with computer simulation. Telo da Gama  

et al [33] have developed a density functional that accounts 
for the orientations in the case of particles with two patches 
located on opposite poles of the spherical hard core. Also very 
recently, Marshall [34] has been able to incorporate the ori-
entational degrees of freedom in a one dimensional model of 
patchy particles with two patches. These recent achievements 
are promising towards the development of a density functional 
for patchy colloids that adequately describes the orientation of 
the patches.

We have studied the bulk phase behaviour of a new model 
of patchy colloids in which the bonding sites are either acti-
vated or deactivated below a given temperature. The model 
exhibits a rich phase behaviour. For example, for a system 
with three patches deactivated by temperature the two phase 
region ends at a lower critical point, a very unusual feature in 
single component systems. Recently, a very similar phase dia-
gram has been predicted for a model of patchy particles [35, 
36] with two types of patches. The interaction energies and 
the number of patches of each type can be tuned in such a way 
that at low temperatures the system favours the formation of 
isolated rings, which eventually leads to a lower critical point. 
In our case the lower critical point is associated to the deac-
tivation of the patches that induces the formation of single 
monomers. Therefore both mechanisms, although different, 
give rise to a lower critical point by breaking the connectivity 
of the system.

For particles with both types of patches, activated and deac-
tivated by temperature, we have found an even more unusual 
behaviour. The phase diagram shows a closed loop bounded 
by two critical points at high temperature, and a low temper
ature demixing region bounded by an upper critical point. A 
similar phase diagram has been predicted in a binary mixture 
of patchy colloids [37], but not in single component systems 
as reported here.

We have also investigated (not shown) more complex 
mixtures, involving e.g. thermal and athermal patches. By 
adjusting the types and number of patches one can basically 
sculpt the shape of the coexistence curve between percolated 
and nonpercolated phases.

We have focused on the low density regime, where only 
fluid phases are stable. At higher packing fractions solid 
phases will be stable. If the patches are deactivated or the 
temperature is high enough the stable crystal structure will 
be that of pure hard spheres. On the other hand, if the patches 
are activated they will play a major role on determining the 
stable crystal structure. For instance, by varying the size of 
the patches in particles with four bonding sites, it is possible 
to stabilize diamond or bcc structures [7]. Our model can be 
used to study the interplay between the entropically driven 
crystal phase of hard spheres and the crystal structures formed 
by patchy colloids.
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