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Using Monte Carlo simulation, we analyse the behaviour of two-dimensional hard rods in four
different types of geometric confinement: (i) a slit pore where the particles are confined between
two parallel walls with homeotropic anchoring; (ii) a hybrid slit pore formed by a planar and
a homeotropic wall; square cavities that frustrate the orientational order by imposing either (iii)
homeotropic or (iv) planar wall anchoring. We present results for the state diagram as a function
of the packing fraction and the degree of confinement. Under extreme confinement, unexpected
states appear with lower symmetries than those of the corresponding stable states in bulk, such as
the formation of states that break the anchoring constraints or the symmetry imposed by the surfaces.
In both types of square cavities, the particles form disclinations at intermediate densities. At high
densities, however, the elastic stress is relaxed via the formation of domain walls where the director
rotates abruptly by 90◦. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919307]

I. INTRODUCTION

A wealth of new phenomena arises when a liquid crystal
is confined in a pore, even in the simplest of geometries where
a slit pore is formed by two identical walls that are parallel to
each other. In that case, the isotropic-nematic transition inside
the pore is shifted with respect to the bulk phase transition and
terminates in a capillary critical point at a specific value of
the wall separation distance. The capillary binodal or capil-
lary nematization line1,2 forms the analogue of the capillary
condensation line in simple fluids. When confining a smectic
phase, layering transitions3 and the suppression of the nematic-
smectic transition for specific pore widths4 occur due to a
commensuration effect between the size of the pore and the
smectic layer spacing. In a hybrid pore, formed by two parallel
walls with two antagonistic anchoring conditions,5–8 a balance
between the anchoring strengths of the two walls and the elastic
energy of the liquid crystal determines the director configura-
tion. The director field can either gradually rotate or generate
a step-like defect. In the latter, the director rotates abruptly
by 90o. If one surface imposes much stronger anchoring than
the other, then the director can be approximately constant in
the entire capillary. Disclinations are another genuine effect
of confinement of liquid crystals. Disclinations can appear
by curvature of the underlying space,9 e.g., by confining a
liquid crystal on the surface of a sphere.10–13 The geometry
and the dimensionality of the system restrict the topology of
the defects that can arise in a given system. The equilibrium
director configuration can be highly non-trivial as a result of the
balance between the inner forces of the system and the external
interaction with the surfaces.

In this paper, we study the corresponding two-dimensional
system of confined liquid crystals. We investigate whether the
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above phenomenology of confinement effects persists in two
dimensions. We model the particles as hard rods with rect-
angular shape. This model has been previously investigated.
The bulk phase behaviour was analyzed with Monte Carlo
(MC) simulation and density functional theory (DFT).14–17

The confinement in a planar slit pore, i.e., a slit pore in
which both walls promote planar anchoring, has been studied
with DFT18 using the restricted-orientation approximation (the
orientation of the particles is restricted to two perpendicular
axes). Triplett and Fichthorn used orientational-bias MC simu-
lation17 to study a planar slit pore with selected system sizes.
In Ref. 19, González-Pinto et al. analysed the confinement
in square cavities with planar anchoring using DFT in the
restricted-orientation approximation. Finally, very recently,
the orientational ordering in circular cavities of selected radii
has been analyzed with MC simulation.20

Here, we confine the particles in homeotropic and hybrid
slit pores and square cavities. We study the phase behaviour
by means of Monte Carlo simulation. For all the geometries
investigated, we present the state diagram in the plane of sys-
tem size and density. We find the expected phenomena such
as capillary nematization and smectization and the formation
of disclinations in closed cavities. Moreover, we find unex-
pectedly domain walls and states that break the anchoring or
the symmetry imposed by the surfaces. We explain qualita-
tively the stability of these new states as a balance between
different contributions to the free-energy. We expect these
new states to appear also in three-dimensional systems under
extreme confinement, a regime that has not been investigated
yet.

Despite the simplicity of the model, the results can be
relevant to understand a variety of systems where packing
plays a crucial role such as, e.g., experiments on vibrated
granular rods,21–23 the adsorption of colloids on substrates,24

the confinement of actin filaments25 and colloids26 in quasi-
two-dimensional geometries, the assembly of anisotropic
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nanoparticles at liquid-liquid27 or liquid-air28 interfaces, and
the confinement of magnetic nanorods.29

II. MODEL AND SIMULATION METHOD

We consider a system of hard rectangular particles of
length-to-width ratio L/D = 20 that interact through excluded
volume interactions. The position vector r⃗i of the center of
mass of the ith particle and the unit vector along the long
particle axis ûi determine the configuration of rod i. We confine
N of such particles between two parallel walls or in a square
cavity. The interaction between the rods and the surfaces is
modelled via an external hard potential vext(r⃗ , û). We use hard
walls (all corners of a particle cannot penetrate the wall) to
promote planar anchoring such that the long particle axis aligns
preferentially parallel to the walls. We use hard center-walls
(the center of mass of a particle cannot penetrate the wall) to
promote homeotropic anchoring, that is, the long particle axis
aligns preferentially perpendicular to the wall,

βvext(r⃗ , û) =



∞, at least one corner outside
wall (planar)

0, all corners inside the system
, (1)

βvext(r⃗ , û) =



∞, center of particle outside wall
(homeotropic)

0, center of particle inside the system
, (2)

where β = 1/kBT , with kB the Boltzmann constant and T the
absolute temperature. A hard wall induces planar anchoring
even for a single particle because a rod sufficiently close
to the wall must adopt a planar configuration. In contrast,
homeotropic alignment at a hard center wall emerges from
collective behaviour (a single particle sufficiently close to the
wall can adopt any orientation). The homeotropic alignment
promoted by hard center walls has been previously shown in
MC simulation10,30 and DFT studies in two31 and three32,33

dimensions using different particle shapes. Given the different
origins of both types of anchoring, we expect the planar
wall to promote stronger alignment of the particles than the
homeotropic wall.

The different geometries that we have analysed are
schematically represented in Fig. 1. In the homeotropic cell
(Fig. 1(a)), the rods are confined between two parallel hard
center-walls on the x axis. We set periodic boundary conditions
in the y-direction. The length of the simulation box in the
y-direction is hy = 10L. In the hybrid cell (Fig. 1(b)), one
of the walls promotes homeotropic anchoring and the other
induces planar alignment of the particles. Periodic boundary
conditions are again applied along the y axis. We also study
confinement in square cavities with planar (Fig. 1(c)) and with
homeotropic (Fig. 1(d)) walls. In all cases, we fix the origin of
coordinates in the middle of the simulation box. h designates
the side length of the square cavities and the distance between
the parallel walls of the homeotropic and hybrid cells. In
order to compare between different geometries, we use an
effective distance heff (see Fig. 1). It takes into account that the
center-walls (homeotropic anchoring) can be penetrated by the
particles by a distance

√
L2 + D2/2. Hence, for homeotropic

FIG. 1. Schematic of the different geometries analysed. (a) Homeotropic
cell. (b) Hybrid cell. (c) Planar square cavity. (d) Homeotropic square cavity.
Periodic boundary conditions in the y-axis are used in both (a) and (b). In
all cases, the origin of coordinates is located in the middle of the simulation
box. Dotted lines represent hard center-walls, i.e., the center of masses of
the particles cannot penetrate the wall (homeotropic anchoring). Dashed lines
indicate hard walls, i.e., the corners of the particles cannot penetrate the wall
(planar anchoring). Solid lines represent the effective walls in the case of
homeotropic surfaces. h is the distance between two parallel walls and heff is
the effective distance that accounts for the extra space that can be occupied by
the corners of the particles if homeotropic walls are present. In the middle of
the hybrid cell (b), we show the particle geometry: a hard rectangle of length
L and width D. The unit vector along the main axis is û and α is the angle
between û and the horizontal axis.

pores and homeotropic square cavities, heff = h +
√

L2 + D2,
for hybrid pores, heff = h +

√
L2 + D2/2, and for planar square

cavities, heff = h. We define the packing fraction η as the ratio
between the area covered by the particles and the total area
of the simulation box, i.e., η = N LD/A with A = h2

eff for the
square cavities and A = heffhy in the case of slit pores.

We study the equilibrium configurations of the confined
rod systems by means of (standard) MC simulations at fixed
number of particles and system area. Temperature is irrele-
vant for hard core systems. Following the ideas in Ref. 20,
we initialize the system at low densities (η < 0.1) with the
particles randomly located and oriented in the simulation box.
Then we equilibrate the system and perform∼106 Monte Carlo
steps (MCSs) to obtain equilibrium configurations. Here, a
MCS is defined as N single particle trial moves, consisting of
translation and rotation. Once the simulation ends, we insert
a few particles and run a new MC simulation. We repeat
the insertion of particles until the desired packing fraction is
reached or until no new particles can be added. Finally, in
order to rule out metastable states, we repeat the whole process,
but now starting with the last configuration of the simulation
(high packing fraction) and removing a few particles each time.
In this way, we can compare the configurations obtained by
increasing and decreasing the number of particles. They should
be the same because gradual transitions between states are
expected giving the dimensionality of the system. In order
to insert new particles, we randomly choose one particle and
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create a parallel replica displaced by∼±D in the direction of the
short particle axis. Then we move and rotate the new particle
a few thousands times. When the insertion of a new particle
leads to overlap with other particles, we choose a new rod to
create the replica. When decreasing the number of particles, we
just select one particle at random and remove it. The number
of inserted/removed particles from one simulation to another
is chosen such that the change in packing fraction is small,
between ∼2 × 10−2 (at low densities) and ∼5 × 10−3 (at higher
densities).

The probability pa of accepting one particle move depends
on the maximum displacement ∆rmax and maximum rotation
angle ∆αmax, each particle is allowed to perform in one MCS.
We aim for pa ∼ 0.25. ∆rmax and ∆αmax are calculated each
time we change N . For each N , we first find ∆αmax in order
to accept half of the rotations. Next, we find ∆rmax in order to
achieve the desired value of pa.

We characterize the structural properties of the confined
rods with three local fields: the density ρ(r⃗), the uniaxial order
parameter S(r⃗), and the tilt angle ψ(r⃗). S(r⃗) is defined as the
largest eigenvalue of the local order tensor Qi j(r⃗) = ⟨2ûiû j

− δi j⟩, where ûi = (cos αi,sin αi) is the unit vector along the
main axis of the i−particle, δ denotes the Kronecker delta, and
⟨· · · ⟩ is a canonical and spatial average. The tilt angle ψ(r⃗) is
the angle between the local director (given by the eigenvector
of S(r⃗)) and the x axis. The local quantities ρ(r⃗), S(r⃗), and
ψ(r⃗) are defined, at each r⃗ , as an average over ∼104 different
configurations at intervals of 102 MCS. Due to the symmetry in
the case of slit pores, the dependence of the local fields is only
on the x axis (the axis perpendicular to the walls). We divide the
x axis in ∼102 equidistant bins and for each bin, we calculate
the local fields by including all the particles with their center of
mass located inside the bin. For the square cavities (Figs. 1(c)
and 1(d)), we study the full x and y dependences of the local
fields. In order to obtain spatially smooth fields, we calculate
the local order tensor by including, for each r⃗ = (x, y), all the
particles whose center of mass is located in a circle of radius
0.5L centered at r⃗ .

III. RESULTS

In bulk, a fluid of hard rectangles of aspect ratio L/D = 20
undergoes a phase transition from an isotropic to a nematic
phase upon increasing the density.14–17 The bulk transition is
continuous, presumably of the Kosterlitz-Thouless type.34–36

The aim of the present work is to study confinement properties,
and hence, we have not analysed in detail the bulk properties.
However, we have run bulk simulations using a square box
of side length 13L with periodic boundary conditions and
found a continuous isotropic-nematic transition at η ≈ 0.27, in
agreement with the predictions of the scale particle theory.15

In what follows, we show the states that occur under
confinement. For each geometry, we group the states in a
diagram as a function of the system size and the packing frac-
tion. We use the local fields (density, uniaxial order parameter,
and tilt angle) to distinguish between distinct states. How-
ever, one should bear in mind that given the confined geom-
etries analyzed here and the dimensionality of the system,
one expects gradual transitions between the different states.

In addition, the distinction between states, such as nematic,
smectic, or isotropic, in confined geometry is not clearcut.

A. Slab geometry: Homeotropic cell

We first consider hard rectangles (L/D = 20) confined be-
tween two parallel planar walls inducing homeotropic anchor-
ing (see Fig. 1(a)). The state diagram in the plane of packing
fraction as a function of pore width is depicted in Fig. 2.
We have calculated about 2400 state points with heff varying
between 1.8L and 10L. The color map shows the average of
the uniaxial order parameter inside the pore,

⟨S⟩ = 1
h


pore

dxS(x). (3)

1. Isotropic, nematic, and smectic states

First, we focus on the larger pores that we have investi-
gated, heff/L ∼ 10. We identified three distinct states: isotropic
(I), nematic (N), and smectic (Si, with i the number of smectic
layers inside the pore). Examples of the particle configurations
and the density profiles for each state in a pore with heff = 10L
are shown in Figs. 3 and 4, respectively. At low densities, the
particles form an isotropic state (Fig. 3(a)). The density profile
(Fig. 4, top panel) is rather constant with a small amount of
adsorption of particles close to the walls. The uniaxial order
parameter (middle panel) is zero except in a small region near
the walls where it shows incipient orientational order due to
the walls. In this region, the particles are (slightly) aligned with
their long axes perpendicular to the walls, as the tilt angle (bot-
tom panel) shows. The maximum in density occurs at contact
with the surfaces. However, the maximum of the uniaxial order
parameter is shifted 0.5–1L away from the walls. This is a
general feature of a hard center-wall that has been previously
reported in three-30,32,33 and two-31 dimensional systems on the
basis of MC simulation and DFT. By increasing the density,
the capillary nematization (i.e., the formation of a nematic

FIG. 2. State diagram as a function of scaled pore width heff/L and packing
fraction η for hard rectangles (L/D = 20) confined in a homeotropic cell. The
color indicates the average uniaxial order parameter ⟨S⟩. White circles show
the state points where ⟨S⟩= 0.5 (the white-dashed line is a guide to the eye).
The black lines delimit approximate boundaries between different states (no
simulation data are available for the regions depicted in white at high packing
fractions).
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FIG. 3. Snapshot of characteristic configurations of the particles in a homeotropic slit cell with heff= 10L. The thick vertical lines represent the effective walls.
The horizontal dashed lines indicate the location of the periodic boundaries. (a) Isotropic state, η = 0.094. (b) Nematic state, η = 0.32. (c) Smectic state, η = 0.64.
The corresponding order parameter profiles for each state are represented in Fig. 4.

state inside the pore) occurs in a continuous fashion, as ex-
pected. In the nematic state, all the particles are oriented, on an
average, perpendicular to the walls (Fig. 3(b) and Fig. 4 bottom
panel). The uniaxial order parameter is positive in the whole
capillary (Fig. 4 middle) and there is an incipient positional
order that propagates into the pore from the walls (Fig. 4
top). By further increasing the density, the particles form a
smectic state (Fig. 3(c)) with well-defined layers (Fig. 4(a)),
the number of which is the result of commensuration between
the size of the pore and the smectic period. In the range of pore
sizes investigated here, we have found smectic states with 2–9
layers. The smectic layers are slightly tilted, especially those
in the center of the pore (see the tilt angle profile in Fig. 4(c)).

FIG. 4. Local fields as a function of x of the states in a homeotropic cell
with heff= 10L. (Top) Scaled density profile ρD2, (middle) uniaxial order
parameter profile S, and (bottom) tilt angle profile ψ. Dotted line: isotropic
state,η = 0.094. Dashed line: nematic state,η = 0.32. Solid line: smectic state
(S9), η = 0.64. Snapshots of the particle configurations corresponding to these
profiles are depicted in Fig. 3.

The reason is that the commensuration is not perfect, i.e., the
ratio between the pore size and the smectic period is not an
integer number.

By reducing the size of the pore, the nematization occurs
at lower packing fractions. In order to visualize this effect, we
have depicted a line of constant average uniaxial order param-
eter, ⟨S⟩ = 0.5, in the state diagram (Fig. 2). This line monoton-
ically increases with heff and asymptotically tends to the bulk
packing fraction at which ⟨S⟩ = 0.5. Therefore, confinement
promotes nematic order. This is an expected behaviour because
even at low densities, the walls induce some homeotropic
anchoring. Similarly, confinement promotes smectic order as
oscillations in the density profile start to appear at lower pack-
ing fractions in smaller pores.

The most interesting phenomenology arises when the
particles are strongly confined in narrow pores and at high
packing fractions. In this regime, new states with symmetries
different than those of the stable bulk phases appear.

2. Smectic C

For pores with heff ≈ 2L, the particles form a nematic state
at intermediate densities. By further increasing the density, the
rods align into two well-defined layers as already present in
the S2 state. Here, however, the particles are strongly tilted
with respect to the direction perpendicular to the layers. We
call this the smectic C state, SC2, where 2 indicates the number
of layers. The particle configurations and the order parameter
profiles of the SC2 state are depicted in Fig. 5 panels (a) and
(b), respectively. The tilt profile (bottom of panel (b)) presents
two minima shifted from the location of the maximum density.
The smectic C state appears because the size of the pore is
not commensurate with the smectic period and the number of
layers is reduced. As a result, the particles tilt in order to fill
efficiently the available space. By increasing the density, the tilt
angle decreases. This is consistent with the fact that the smectic
period monotonically decreases with the density. In Fig. 5(c),
we plot the tilt angle at contact with the wall, φC, as a function
of heff. For each packing fraction, above a certain threshold,
there is a critical pore size below which the particles start to
tilt. The smaller the pore is the more tilted the particles are.
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FIG. 5. (a) Snapshot of characteristic configurations in a homeotropic cell
with heff= 2.075L increasing the number of particles: η = 0.25, nematic state
(left); η = 0.52, smectic C state (middle); η = 0.79, smectic C state (right). (b)
Local fields as a function of x: density profile (top), uniaxial order parameter
(middle), and tilt angle (bottom). The different sets correspond to the states
showed in panel (a): η = 0.25, nematic state (dotted line); η = 0.52, smectic
C state (dashed line); η = 0.79, smectic C state (solid line). (c) Smectic C tilt
angle (absolute value) as a function of the pore width for different packing
fractions, as indicated.

We have also found a smectic C state with three layers, SC3,
in a small region of the state diagram around heff = 3.25L (see
Fig. 2). This region is significantly smaller than the stability
region of the SC2 state, and it appears at higher packing frac-
tions than SC2 does. At very high packing fractions, the smectic

period is sufficiently small such that three non-tilted layers fit
inside the capillary and the SC3 state is replaced by a S3 state.

We have not found smectic C states with more than three
layers although we cannot rule out their existence in regions of
the state diagram at very high packing fractions. Nevertheless,
we are confident that those regions shrink rapidly by increasing
the pore size and eventually might cease to exist. This can
be understood as follows. There is a minimum dmin and a
maximum dmax layer spacing between which the formation
of non-tilted smectic layers is stable. Consider a capillary
with n smectic layers inside. As a rough estimate, the layers
will tilt if there is no sufficient space to accommodate n non-
tilted layers, i.e., if the condition heff/n ≤ dmin is satisfied.
In addition, heff/(n − 1) ≥ dmax should hold as well, because
otherwise an Sn−1 state, and not an SCn state, would be stable.
Both conditions together roughly set the limits in pore size for
a smectic C phase with n layers as

(n − 1)dmax ≤ heff ≤ ndmin. (4)

The above equation also shows that the range in pore size in
which the smectic C is stable decreases with increasing n.
Indeed, there is a maximum pore size above which no tilted
smectic is expected,

hmax
eff = dmaxdmin/(dmax − dmin), (5)

which results from taking the equality on both sides of Eq. (4).
For hard rectangles, dmin ≈ L (because the particles cannot
overlap). We can express dmax = dmin(1 + ∆), with ∆ being the
maximum expansion of the layer spacing for the smectic state
in units of dmin. Then, using Eq. (5), hmax

eff = L(1 + ∆)/∆. We
did not find Sc states for heff & 3.25L. It implies∆ ≈ 0.4, which
seems to be a reasonable value.

3. Brush states

The remaining states in the diagram depicted in Fig. 2 are
the brush nematic Bi and the brush smectic BSi, both with i
homeotropic layers.

For pores with size in the vicinity of heff ≈ 3L and high
packing fractions, there is a region where B2 and BS2 are stable.
In Fig. 6, we show the corresponding order parameter pro-
files and characteristic particle configurations. By increasing
the density from a stable nematic state, some of the particles
located in the middle of the pore rotate by 90◦, placing their
long axis parallel to the walls (nematic-brush state). A further
increase in the number of particles results in the pure brush
nematic state B2, with one layer of particles with homeotropic
anchoring adjacent to each wall. The particles at the center
of the cavity are aligned parallel to the walls. To rule out the
possibility that this state is an artefact of our method of increas-
ing the number of particles, we have initialized a system with
η = 0.5 and heff ≈ 3L in a nematic state with all the particles
perpendicular to the walls. After an equilibration stage of about
106 MCS, the particles formed the brush state. Hence, we are
confident that the brush state is indeed stable. The extent of the
central region, where the particles are oriented parallel to the
walls, grows by increasing the density (see, e.g., the tilt angle
profile in Fig. 6, bottom of panel (b)). In the B2 state, those
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FIG. 6. Homeotropic cell with heff= 3L. (a) Snapshot of characteristic con-
figurations: nematic state, η = 0.31 (left); nematic-brush, η = 0.46 (second);
brush, η = 0.59 (third); smectic-brush, η = 0.80 (right). (b) Local fields as
a function of x/L of the states showed in panel (a): density profile (top),
uniaxial order parameter (middle), and tilt angle (bottom). The different
sets are nematic (dotted line), nematic-brush (red dotted-dashed line), brush
(dashed line), and smectic brush (solid line). (c) Average of the tilt angle
profile in a pore with heff= 3L as a function of the packing fraction. Results
obtained by increasing and decreasing the number of particles. Simulation
parameters: NMCS= 1.1×106, hy = 10L (black-dashed line); NMCS= 1.1
×107, hy = 10L (blue-dotted line); and NMCS= 1.1×106, hy = 20L (red-
solid line).

particles in the central region possess orientational but no posi-
tional order. However, at sufficiently high packing fractions,
smectic layers occur also at the center. This additional order
constitutes the smectic brush state, BS2.

The transitions between the different states are gradual,
and hence, no differences should appear if we, e.g., fix the size
of the pore and track the order parameters by first increasing
and then decreasing the density. This is actually what we

have found for all the states discussed throughout the paper
except for the nematic-brush transition: We plot in Fig. 6(c)
the average of the tilt angle profile,

⟨ψ⟩ = 1
h


pore

dxψ(x), (6)

as a function of the packing fraction, as obtained by either
increasing or decreasing the number of particles. ⟨ψ⟩ is approx-
imately zero in the nematic state and is different than zero in
the brush-nematic state due to the particles aligning perpen-
dicular to the walls. We show in the figure three sets of data
corresponding to simulations with different numbers of MCS
and different lateral pore sizes. In the three cases, there is a
strong hysteresis, most likely related to a finite size effect,
because our system can be effectively considered as a one-
dimensional system with short range interactions where no
first order transitions are expected according to the so-called
van Hove theorem. Nevertheless, the van Hove theorem does
not apply in the presence of external fields (see Ref. 37 for a
discussion about the exceptions to the van Hove theorem).

Brush nematic and smectic states with three layers of
particles that are perpendicular to the walls also appear in the
region of the state diagram, where heff ≈ 4L (see the labels B3
and BS3 in Fig. 2). An example of the BS3 state is shown in
Fig. 7(a). The B3 and BS3 states are, in general, not symmetric
in x. The region of particles aligned parallel to the walls is
not located in the middle of the cell. In order to test the
stability of the unexpected symmetry breaking of these states,
we have initialized the system in a symmetric configuration
where two small regions of rods parallel to the walls are placed
between layers of particles with homeotropic configuration.
The resulting configurations after running more than 107 MCS
are shown in panels (b) and (c) of Fig. 7. As we had to initialize
the system at very high packing fractions, we were not able to
recover the asymmetric brush profile shown in (a). However,
the states in (b) and (c) are again asymmetric. They resemble
coexistence states between the state represented in (a) and
its mirror image. Hence, we conclude that the symmetric B3
and BS3 phases are not stable. This could have been antici-
pated because the symmetric state has four interfaces between

FIG. 7. Snapshots of the particle configurations in a homeotropic cell with
heff= 4L ((a) and (b)) and heff= 4.1L (c) at an average packing fraction
η = 0.80.
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parallel and perpendicular rods, whereas the asymmetric one
contains only two. Asymmetric profiles in symmetric pores
have been previously found in three-dimensional mixtures of
hard rods38 and monocomponent and binary mixtures with
soft interactions, see, e.g., Refs. 39–42. The states shown in
(b) and (c) are probably not stable because they have larger
interfaces than the one obtained by gradually increasing N (a).
In addition, in both cases, the central layer is distorted, which
increases the elastic energy of the system. Nevertheless, due
to the finite-time simulations and the finite lateral pore size,
the system may show a bimodal behaviour oscillating between
states (b) and (c) as if it were a genuine phase transition.

As for the smectic C states, the regions in the state dia-
gram, where the brush states are stable, move to high packing
fractions and shrink with the size of the pore. We could not find
brush states above B3 but their existence in narrow regions and
high packing fractions cannot be ruled out.

Instead of forming a brush state, the particles could tilt
and form a smectic C state reaching very high packing frac-
tions, similar to those in the brush state. Hence, an interesting
question is why there are regions of the state diagram where the
brush states are more stable than the smectic C? To answer this
question, we compare the excess in free energy of both states
with respect to non-distorted nematic or smectic states. In the
brush state, the excess in free energy is dominated by the two
interfaces of perpendicularly aligned particles. In the smectic
C state, there are two important contributions: the violation of
the anchoring imposed by the surfaces and the formation of
tilted layers. Both contributions increase by increasing the tilt
angle. The tilt angle in the smectic C state, and hence the excess
in free energy, increases by reducing the size of the pore. As
a consequence, the brush states appear replacing the smectic
C when the size of the pore is reduced. This simple argument
explains not only the appearance of the brush states but also
their relative position to the SC in the state diagram, cf. Fig. 2.

The regions in the state diagram (Fig. 2), where smectic
C and brush states become stable, possess a smaller average
uniaxial order parameter than the surrounding regions. When
these states start to form, there are regions in the pore where the
particles align according to the incipient state and other regions
where the particles remain in the nematic state. In addition, the
order parameter profiles of the brush states depend on both the
vertical and the horizontal coordinates. However, we calculate
them only as a function of the horizontal coordinate. Both
effects result in an artificially reduced uniaxial order parameter
that, on the other hand, is useful to distinguish the boundaries
between states in the state diagram.

B. Slab geometry: Hybrid cell

Next, we investigate the behaviour of hard rectangles
with the same aspect ratio L/D = 20 as before, but confined
between two parallel walls that promote antagonistic anchor-
ing, the so-called hybrid cell. The “left” wall induces home-
otropic anchoring and the “right” wall promotes planar align-
ment of the particles (see a schematic of the geometry in
Fig. 1(b)). The state diagram is depicted in Fig. 8 in the plane
of packing fraction η and scaled-effective pore width heff/L.
As in the previous case, the color map indicates the value of

FIG. 8. State diagram as a function of the scaled pore width heff/L and
the packing fraction η for hard rectangles (L/D = 20) confined in a hybrid
planar cell. The color map represents the value of the averaged uniaxial order
parameter ⟨S⟩. The empty circles connected with a dashed white line show
the state points for which ⟨S⟩= 0.5. The empty squares connected via a solid
white line show the approximate boundary between the linear and the uniform
states.

the averaged uniaxial order parameter inside the pore. We have
run more than 800 simulations with pore widths heff/L = 2–10
to generate the diagram.

For any pore width, the isotropic state is stable at low
densities. In this state, there is a small layer of particles oriented
perpendicular (parallel) to the left (right) wall. The remaining
particles do not show orientational order. As discussed, the
anchoring imposed by the planar wall is stronger than that of
the center-hard wall. A manifestation of this is the value of
uniaxial order parameter in the isotropic state (not shown),
which is higher close to the planar wall than close to the
homeotropic one. Confinement in a hybrid cell promotes, as in
the homeotropic cell, orientational order of the particles (see,
e.g., the line of constant uniaxial order parameter in the state
diagram).

First, we focus on the regime of large pore sizes. By
increasing the number of particles, the following sequence
of states appears: isotropic (I), step (ST), linear (L), uniform
nematic (U), and uniform smectic (US). Examples of the
configuration of the particles and the order parameter profiles
in the intermediate and high density states for a pore with
heff = 10L are shown in Figs. 9 and 10, respectively.

1. Step state

Also known as director-exchange phase or biaxial phase,
the step phase was proposed by Schopohl and Sluckin43 and by
Palffy-Muhoray et al.6 It has been studied in three-dimensional
systems with Landau-de Gennes theory,6,7,44 simulation,45,46

and density functional theory.8,47 In the ST state, there are two
nematic regions with uniform and opposite directors following
the anchoring imposed by the surfaces (see Fig. 9(a)). The
interface between both regions is sharp; the director rotates
by 90◦ in a region of about two molecular lengths (see the tilt
profile in Fig. 10 dotted line). At the interface, the uniaxial
order parameter drops to zero. For large pores, the ST state is
stable in a very narrow region of packing fractions contiguous
to the isotropic state. Actually, as suggested in Ref. 31, the ST
state could be a manifestation of the isotropic state at densities
close to the capillary nematization in sufficiently narrow pores.
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FIG. 9. Snapshots of a representative configuration of the particles in a hybrid cell with heff= 10L. (a) Step state, η = 0.29. (b) Linear nematic state, η = 0.37. (c)
Uniform nematic state, η = 0.43. (d) Uniform smectic state, η = 0.78. The corresponding order parameter profiles of these configurations are shown in Fig. 10.

2. Linear state

Increasing the packing fraction from the ST state in
large pores gives rise to the formation of the linear state
(see Fig. 9(b)). Here, the director rotates continuously from
homeotropic to planar anchoring (see Fig. 10, red dotted-
dashed line). Far enough from both substrates, the tilt profile
varies linearly with the distance across the pore. In this way, the
elastic free energy is minimized. The formation of the L state
is the analogue to the capillary nematization in a symmetric
pore. The L state is compatible with the anchoring imposed

FIG. 10. Local fields as a function of x of the states in a hybrid cell with
heff= 10L. (Top) Density profile, (middle) uniaxial order parameter profile,
(bottom) tilt angle profile. Dotted line: step state,η = 0.29. Red dotted-dashed
line: linear nematic state, η = 0.37. Dashed line: uniform nematic state,
η = 0.43. Solid line: uniform smectic state,η = 0.78. Snapshots of the particle
configurations corresponding to these profiles are depicted in Fig. 9.

by both substrates and at the same time minimizes the elastic
free energy.

3. Uniform nematic state

By further increasing the packing fraction, there is a
configurational change from the linear state to the uniform
nematic state. The U state is a nematic with uniform direc-
tor parallel to the wall except for the first layer of particles
adsorbed at the homeotropic wall, where the particles are
perpendicular to the substrate (see Figs. 9(c) and 10). This first
layer is most likely a consequence of the peculiarities of the
hard center-wall, which allows for a high packing fraction of
particles only in the case that rods are aligned perpendicular to
the wall. The linear-uniform transition is a consequence of the
stronger anchoring induced by the planar wall in comparison
to the hard-center wall. Although it occurs gradually as we
increase the packing fraction, the range in η at which the
transition occurs is small, enabling us to draw a line in the state
diagram that approximately indicates its location (see Fig. 8).

The density at the L-U configurational change and, there-
fore, the range in packing fractions at which the L state is
stable, increases with the pore width. Actually, the L state
may replace the uniform nematic state in the regime of very
large pores. To understand this, consider the excess in free
energy of the L and U states over a bulk undistorted nematic,
∆Fex. In the L state ∆FL

ex = FR
A + FL

A + Fel, where FR
A and FL

A

are due to the anchoring imposed by the right and the left
walls, respectively, and Fel is the elastic energy due to the
deformations of the director field. For very large pores, the
director varies linearly and rotates by 90◦ in the pore. Hence,
the divergence of the director is ∇ · n̂ ≈ π/(2h) and the elastic
energy Fel ≈ k1(π/2)2/h, with k1(η) the splay elastic constant.
In the uniform state, both anchoring constraints are satisfied
and contribute to the excess in free energy as in the linear state.
The director is not distorted (Fel = 0) but there is an interface
generated by the first layer of particles with homeotropic align-
ment. Hence,∆FU

ex = FR
A + FL

A + FI, where FI is the free energy
of the nematic-nematic interface. The elastic contribution in
the L state decreases with h but FI does not. Therefore, we
expect the L state to replace the U state for sufficiently wide
pores. Note that the same argument is valid if instead of an
interface between two nematics with opposite directors in the
U state, there is a violation of the anchoring imposed by one of
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the substrates. In that case, the anchoring energy in the U state
would be higher than that in the L state and would not decrease
with the size of the pore. We have performed simulations in a
pore with heff = 20L, and the L-U transition occurs at η ≈ 0.6,
considerably higher than, e.g., the case heff = 10L (η ≈ 0.41).
This scenario, in which the L state replaces the U state in very
wide pores, is therefore plausible. Nevertheless, we cannot rule
out another scenario in which the U state is stable for any pore
width, as it has been found in Ref. 31. In Ref. 31, a system
of spherocylinders confined in a hybrid cell is analyzed with
DFT, and the LU transition persists at any pore length due
to an anchoring transition at one of the substrates, i.e., the
type of anchoring induced by the wall changes by varying the
density. In our case, however, such an anchoring transition
is not expected as we deal with hard core potentials. Note,
nevertheless, that the first layer of particles adsorbed on the
hard-center wall could effectively act as a hard wall for the
second layer if the density is sufficiently high, which in practice
could be viewed as an anchoring transition. In this second
scenario, the U state would be stable even for very wide pores.
Simulations for pores wider than those considered here could
help to elucidate this point.

4. Uniform smectic state

Finally, at very high packing fractions, the particles par-
allel to the walls form smectic layers. The resulting state is
similar to the uniform nematic but with positional ordering. An
example of the particle configurations is presented in Fig. 9(d).
The corresponding order parameter profiles are shown in
Fig. 10 (solid lines). The formation of layers by increasing the
density from the U state takes place very gradually and we
could not identify the packing fraction of the U-US transition
in the state diagram. We find that the direction of the layers
is not perpendicular to the walls. The director is tilted with
respect to the direction perpendicular to the layers, like it is in
a smectic C. We did not find any relation between the tilt angle
and the size of the pore. The fact that the layers are tilted could
be a finite size effect related to the vertical size of the pore, or
it could also be related to high fluctuations in the tilt angle.

In contrast to the homeotropic case, the state diagram of
the hybrid cell does not show additional states in the regime
of small pores. The only significant difference in the region
of small pores with respect to the region of large pores is that
the linear state disappears. We could not find the linear state in
pores with heff . 5L.

C. Square cavity with planar walls

We next consider confinement of the rods in a square cav-
ity favouring planar alignment of the particles (see a sketch of
the geometry in Fig. 1(c)). Confinement in all spatial directions
adds additional constraints on the orientational ordering of the
particles that might result in, e.g., the formation of topological
defects. The state diagram in the plane of packing fraction and
side length is depicted in Fig. 11. We found three distinct states:
isotropic (I), elastic (E), and bridge smectic (BrS). Represen-
tative results of these states are shown in Fig. 12 for a cavity
with side length heff = 7L.

FIG. 11. State diagram of a fluid of hard rectangles (L/D = 20) confined
in a square cavity with planar anchoring in the packing fraction-side length
plane. The color map represents the average of the uniaxial order parameter
inside the cavity, ⟨S⟩. Empty circles indicate the position where ⟨S⟩= 0.5.
Empty squares roughly show the boundary between the elastic and the bridge
smectic states. Lines are guides to the eye.

At low densities, the isotropic state is stable, here, the fluid
is disordered. Only a thin layer of particles close to the walls
shows some degree of orientational order (see the uniaxial
order parameter in Fig. 12(a)). The density (not shown) is
rather uniform in the whole cavity, showing only a small
desorption of particles close to walls, especially near the
corners of the cavity. The uniaxial order parameter is also
smaller in the vicinity of the corners. The nematization occurs
by increasing the number of particles. The result is a gradual
transition from the isotropic to the elastic state (see Fig. 12(b)).
In the E state, the nematic cannot adopt a uniform configuration
due to the surfaces and six disclinations arise in the cavity.
Four disclinations are located in the corners of the cavity. In the
middle of the cavity, the rods align along one of the diagonals.
This leads to the formation of two further disclinations with
topological charge −1/2 located along the other diagonal, at
a distance of about 2.5L from the corners. The disclinations
are clearly visible as a drop of the uniaxial order parameter
(see Fig. 12(b)). The density profile (not shown) also reveals a
depletion of particles close to the defect cores. The position of
the cores of the −1/2 defects fluctuates during the simulation
but they always stay away from each other. The inner −1/2
defects are connected with the adjacent corner defects, see the
uniaxial order parameter in Fig. 12(b). The smaller the cavity
becomes the stronger this effect is.

The packing fraction at which the capillary nematization
occurs increases monotonically with the size of the cavity
and tends asymptotically to the bulk value (see, for example,
the line of constant average uniaxial order parameter depicted
in the state diagram, Fig. 11). The average order parameter
⟨S⟩ depends nontrivially on heff and η. In the I region, e.g.,
η = 0.1, ⟨S⟩ decreases by increasing heff because the walls
induce order in a small region close to them and the ratio
between this region and the whole cavity decreases as heff is
increased. Once the nematic is formed, the trend is reversed.
For instance, at η = 0.3, the smaller the cavity becomes the
lower ⟨S⟩ is. Here, the whole cavity is in a nematic state,
except in those regions where the disclinations appear, and the
ratio between the surface occupied by the disclinations and the
whole cavity decreases with heff.
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FIG. 12. Square cavity with planar anchoring and side length heff= 7L. The dashed square indicates the location of the walls. Upper row: snapshots of the
particle configurations. Bottom row: local uniaxial order parameter. (a) I state with η ≈ 0.097. (b) E state with η ≈ 0.40. (c) BrS state with η ≈ 0.71.

Next, we focus on the regime of high packing fraction.
By increasing η from the E state, the particles show incipient
positional order, forming smectic layers without changing their
director field (not shown). Then, at higher packing fractions,
there is a complete structural change to the bridge smectic state
(see Fig. 12(c)). In the BrS state, the particles that were oriented
along one diagonal in the E state rotate by 45◦ generating three
domains where the director is almost uniform. The domains
are separated by domain walls where the director rotates by 90◦

(the uniaxial order parameter vanishes at the domain walls, see
Fig. 12(c)). The domain walls connect two corners and divide
the cavity in three regions with uniform director. The size of
the domains fluctuates but the central domain is always bigger
than the others. The domain walls become more rigid as the
density is increased. The same state has been predicted recently
using density functional theory in a system of rectangles with
restricted orientations (Zwanzig approximation) confined in
the same geometry.19 The authors of Ref. 19 classify the BrS
state according to the number of smectic layers in the central
domain. Such a criterion is not applicable in our case due to
the large fluctuations of the domain walls, but obviously the
number of smectic layers in the cavity varies with the side
length.

In order to estimate the packing fraction of the E-BrS
transition, we have made a histogram of the global tilt angle ψg
inside the cavity, i.e., the tilt angle resulting in a diagonalization
of the tensorial order parameter formed by all the particles. In
the isotropic state, ψg fluctuates between 0 and π. As soon as
the elastic state arises, ψg fluctuates between the values for

both diagonal directions; the histogram shows two peaks at
ψg ≈ π/4 and 3π/4. At high densities, but still in the E state,
the system stops fluctuating between the diagonals (during the
available simulation time) and the histogram shows only one
peak either at ψg ≈ π/4 or 3π/4. Finally, in the BrS state, there
is a single peak centered at ψg ≈ 0 or π/2 governed by the
particles of the main domain. Again at these packing fractions,
the particles cannot fluctuate between both equivalent states
with ψg ≈ 0 or π/2 during the available simulation time. The
behaviour ofψg allows us to estimate the E-BrS transition as the
packing fraction at which ψg changes from ψg ≈ π/4 or 3π/4
to 0 or π/2. The result is plotted in the state diagram, Fig. 11.
The bigger the cavity is the higher the packing fraction at the
E-BrS transition is. We can rationalize the transition as follows.
Let∆F be the excess in free energy of the confined system over
a bulk undistorted state. In the BrS state, ∆FB = Fw + Fd with
Fw being the anchoring free energy due to the interaction with
the walls and Fd the contribution due to the domain walls. In the
E state, ∆FE = Fw + Fe + Fc, with Fe accounting for the elastic
deformations of the director field and Fc for the disclination
cores. Fw is similar in both cases because the anchoring is
satisfied in both states. Fd is proportional to the length of the
domain walls and hence to heff. Fc does not depend on the size
of the cavity and, finally, the elastic energy is48

Fe =


cavity

dr⃗
�
k1(∇ · n⃗)2 + k3(n⃗ × (∇ × n⃗))2� , (7)

where n⃗(r⃗) is the director field and k1 and k3 are the splay
and bend elastic constants, respectively. For rods confined in
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FIG. 13. Phase diagram of a fluid of hard rectangles L/D = 20 confined
in a square cavity with homeotropic anchoring: packing fraction-side length
plane. The color map indicates the average of the uniaxial order parameter
⟨S⟩. Empty circles mark the packing fraction at which ⟨S⟩= 0.5. Empty
squares roughly indicate the elastic-bridge nematic transition. Lines are
guides to the eye.

a circular cavity, the elastic energy grows logarithmically with
the radius of the cavity.31 Here, we have computed numerically
the divergence and the rotational of the director in the E state,
and we have found that the dependence of the elastic energy
with the cavity size is also weak, increasing slower than linear
in heff. On the other hand, in the BrS state, the size of the domain
walls is proportional to the size of the cavity, and hence, Fd
∝ heff. Therefore, for a fixed η, we expect the bridge state to
be replaced by the elastic state at sufficiently big cavity sizes
due to different dependences of∆F with heff in both states. The
increase of the packing fraction at the E-BrS can be understood,
given the behaviour of the elastic constants with the packing
fraction; both k1 and k3 monotonically increase with η.

In a very recent study,49 Garlea and Mulder have simulated
a quasi-monolayer of hard spherocylinders confined in a square
prism as well as the two-dimensional limit of discorectangles

in a square cavity. The authors observe a state very similar to
the elastic state in which the inner −1/2 defect and its adjacent
corner defect form a kind of line defect. Actually, in our case,
for the smaller cavities, it is difficult to say whether those
defects are actually two independent defects or whether they
form a single structure. Garlea and Mulder have also found
smectic ordering in their simulations, but in contrast to our
findings, they did not observe domain walls at high packing
fractions, although they state in Ref. 49 “. . . we do sometimes
observe particles trapped perpendicularly to the smectic layers,
invariably next to the wall.” The differences at high packing
fractions between both systems are probably due to the slightly
different geometries of the particles (spherocylinders vs. rect-
angles). In contrast to hard spherocylinders (or discorectangles
in two dimensions), hard rectangles possess degenerate close
packing states and have a higher tendency to cluster.15,50 This
may explain the presence of domain walls in a system of hard
rectangles and its absence in a system of hard spherocylinders.
It is unlikely that the dimensionality plays a dominant role
because Garlea and Mulder have studied both the quasi two
dimensional system and the strict two-dimensional limit and
found no differences between them.

D. Square cavity with homeotropic walls

Finally, we investigate the confinement of rods in a square
cavity that promotes homeotropic anchoring (a schematic of
the geometry is shown in Fig. 1(d)). The state diagram and
representative states for heff = 7L are shown in Figs. 13 and
14, respectively. Here, as in the case of the planar cavity, the
elastic state consists of particles aligned along one diagonal
(see Fig. 14(b)). However, in contrast to the planar cell, the
alignment of the particles leads to the formation of only two
disclinations with topological charge +1/2 (see the drop of

FIG. 14. Representative states in a square with homeotropic anchoring and side length heff= 7L. The solid (dotted) square indicates the effective (actual) walls.
Upper row: snapshots of the particles. Bottom row: local uniaxial order parameter. (a) Single defect elastic state with η = 0.25. (b) E state with η ≈ 0.30. (c) Br
state with and η ≈ 0.40. (d) BrS state with and η ≈ 0.60.
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the uniaxial order parameter in panel b of Fig. 14). The fluc-
tuations in the position of the disclinations are high, much
higher than in the planar cavity. This is most likely related
to the dominant elastic deformations of the director involved
in each disclination: splay-like deformations in the case of
+1/2 disclinations and bend-like in −1/2 disclinations. As
k3 ≥ k1 (see, e.g., Ref. 51), we expect more fluctuations in the
positions of +1/2 disclinations than in −1/2 disclinations. As
an example of the high fluctuations of the +1/2 disclination
cores, we show in Fig. 14(a) a state where both disclinations
have merged forming a single +1 disclination. This state is
a variation of the elastic state that we observe sometimes,
especially at low densities. This configuration is metastable
because it involves higher elastic deformations and the energy
of one +1 disclination core is higher than that of two +1/2
disclination cores (the energy of a disclination core increases
with the square of its topological charge).

By further increasing the density, we find a gradual transi-
tion from the elastic to the bridge nematic state (Fig. 14(c)). In
the bridge nematic state, there are three domains of particles
with uniform director. In contrast to the planar cavity, here, the
bridge state is not accompanied by positional order because it
appears at lower density (compare the position of the elastic-
bridge transition in the state diagrams of Figs. 11 and 13)
and the particles remain in a nematic state. Another difference
involves the domain walls that stay always at a distance of
about one molecular length from the (effective) walls. The
position of the domain walls fluctuates less than in the case
of a planar cavity. At higher packing fractions, the rods in the
main domain form well-defined layers. We call this the bridge
smectic state, BSi, where i indicates the number of layers of the
main domain. The number of smectic layers is well defined
due to the stable positions of domain walls in the cell. The
number of layers is the result of commensuration between the
side length of the cavity and the smectic layer spacing. The
approximate regions of the distinct BSi states are indicated in
the state diagram of Fig. 12.

IV. CONCLUSIONS

In summary, we have performed a systematic analysis
of the behaviour of two-dimensional hard rods confined in
slit pores and in square cavities. In the case of slit pores, we
have shown that our simple hard core model contains much of
the phenomenology observed in corresponding confined three
dimensional systems. Examples are the capillary nematization
and smectization in homeotropic pores, and the formation of
linear and step states that occurs in hybrid planar cells. In
addition, we have found new states that have not been exper-
imentally observed or theoretically predicted. An example is
the smectic C and the brush state that we have observed in
homeotropic cells. Both states break the anchoring imposed by
the surfaces. The asymmetric brush state breaks also the sym-
metry of the cell. In all cases, we have rationalized the stability
by comparing the excess in free energy to the corresponding
undistorted bulk phase.

In recent experiments on vertically vibrated monolayers of
rods confined in a circular cavity,21,52 the same textures were
found as MC studies predict for equilibrium rods.20 Actually,

the elastic state we have found in the square planar cavity
has been observed in vibrated granular rods.52 Granular mate-
rials flow and diffuse anomalously.53,54 Although being non-
thermal fluids, under certain circumstances, such systems form
steady states with the textures of thermal fluids. A comparison
between MC simulation of confined rods (thermal fluid) and
vibrated granular rods (non-thermal fluid) would help to find
the analogies between both systems. The elastic state of the
planar square cell has also been observed experimentally in
confined actin filaments,25 colloidal particles,26 and predicted
using Onsager-like density functional theory.55 The authors
of Ref. 26 found, using experiments on confined colloids and
Oseen–Frank elastic theory, that the elastic state is metastable
with respect to another state that contains two corner disclina-
tions and is free of bulk disclinations (diagonal state). In the
diagonal state, the total deformation of the director is higher
than in the elastic state, but on the other hand, the diagonal state
has no bulk disclinations. The total elastic energy decreases
with the size of the cavity, and the energetic cost associated to
a disclination is independent of cavity size. Hence, we expect
the diagonal state to replace the elastic state in our system
for cavities much bigger than the ones studied here. The rate
between the splay and bend elastic constant also plays a role
determining the relative stability of the confined states. In
Ref. 26, the case of equal elastic constants is analysed, whereas
in our system, we expect the bend elastic constant to be much
higher than the splay one.

Although we have analysed a two-dimensional model, our
results may be of relevance to gaining a better understanding of
three-dimensional systems where similar phenomenology has
already been found. For example, capillary nematization32,33

and smectization3,4,56 have been studied in confined rods and
platelets between two parallel walls. The hybrid cell has also
been analysed in three dimensions,47 and phases with the same
symmetry as those found here appear. Our results indicate that
other states, not observed yet in three-dimensional systems,
can arise under extreme confinement. For example, states that
break the anchoring, like the smectic C or the brush states
found here, or states with symmetry breaking (i.e., asymmetric
states in confined symmetric pores) such as the asymmetric
brush state. Those states might be difficult to find in, e.g., den-
sity functional studies where one typically assumes that the
symmetry of the order parameter profiles is the same as the
one imposed by the surfaces.

It is interesting to compare the confinement of rods in
square cavities, Secs. III C and III D, with the recent study
of confined rods in circular cavities.20 In both cases, at high
densities, the system forms domain walls in an attempt to
reduce the elastic distortions of the director field. Although the
domain walls will probably disappear in larger cavities, they
might be a general mechanism to reduce elastic stresses under
extreme confinement.

Some of the states found in the slit-pore geometry show
lateral ordering, such as, for example, the brush smectic
states. For selected pore sizes, we have performed simulations
varying the lateral size of the cell, hy from 10 to 20L and no
differences have been found. We are, therefore, confident that
the lateral ordering is not induced by the applied boundary
conditions. Nevertheless, Monte Carlo simulations in the
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isothermal–isobaric ensemble (NPT) might help to elucidate
the role that the lateral size of the pore plays in the stability of
such states.

We have restricted the analysis to hard rectangles with
length-to-width ratio of 20. We expect a similar phenome-
nology for particles with aspect ratio higher than ∼7 because
the bulk behaviour is qualitatively the same. However, for
particles with shorter aspect ratios, completely new phenom-
enology will presumably appear because states with tetratic
correlations are stable in bulk50,57 and might modify the phase
behaviour presented here.
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