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Universitätsstraße 30, D-95447 Bayreuth, Germany and
2Soft Matter Theory, University of Fribourg, CH-1700 Fribourg, Switzerland

DENSITY FUNCTIONAL THEORY

The exact density functional of a one dimensional sys-
tem of hard-particles was developed by Percus [1]. The
free energy is

F [ρ(1)] = Fid[ρ(1)] + F ex[ρ(1)], (1)

where Fid is the ideal gas contribution and the excess
part F ex accounts for the excluded-volume interactions
between the particles:

βFid[ρ(1)] =

∫
dxρ(1)(x)

(
ln(Λρ(1)(x))− 1

)
, (2)

βFex[ρ(1)] =

−1

2

∫
dx
(
ρ(1)(x− σ/2) + ρ(1)(x+ σ/2)

)
ln(1− η(x)).

In the above expressions β = 1/kBT with kB the Boltz-
mann constant and T the temperature. Λ is the (irrele-
vant) thermal wavelength, x is the space coordinate, and
η(x) is the local packing fraction, defined as

η(x) =

∫ x+σ/2

x−σ/2
dx′ρ(1)(x′), (3)

with σ the particle length.
The grand canonical density functional is

βΩ[ρ(1)] = F [ρ(1)] +

∫
dxρ(1)(x)(Vext(x)− µ), (4)

where µ is the chemical potential and Vext is the external
potential.

The equilibrium density profiles are those that mini-
mize the grand potential density functional at constant µ.
We use a standard conjugated gradient method to mini-
mize Ω. In order to compare the results with the canoni-
cal Brownian dynamics (BD) or Monte Carlo (MC) sim-
ulation we find the chemical potential for which the aver-
age number of particles is equal to the number of particles
in the simulation. Given the reduced number of parti-
cles the canonical and the grand canonical ensembles are
not equivalent. The grand canonical density profiles are
combinations of canonical profiles. We show in Fig. 1 the
equilibrium density profiles of a system of N = 10 par-
ticles confined in a pore with Lx = 25σ in the canonical
(MC) and grand canonical (DFT) ensembles. The differ-
ences are small and do not justify the large discrepancy
between the predictions of Dynamic Density Functional
Theory (DDFT) and BD.
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Figure 1. Equilibrium density profiles of a system of hard
particles confined between hard walls separated by a distance
25σ. Black-solid line: the grand canonical density profile ob-
tained with DFT at a chemical potential βµ = 0.3258 that
corresponds to an average number of particles 〈N〉 = 10. Red
circles: canonical MC simulation of a system of N = 10 par-
ticles.

DYNAMIC DENSITY FUNCTIONAL THEORY

In DDFT the time evolution of the density profile is
governed by the continuity equation [2, 3]

∂ρ(1)(r, t)

∂t
= −∇ · Jad(r, t), (5)

where r is the coordinates vector, t is the time, and Jad

is the adiabatic current given by

ξJad(r, t) = −ρ(1)(r, t)
(
∇ δF [ρ(1)]

δρ(1)(r, t)
+∇Vext(r, t)

)
,

(6)
where ξ is the friction coefficient and Vext is an external
potential.

For the one-dimensional system of particles analysed
here, the equation for the time evolution of the density
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Figure 2. a) Adiabatic force calculated from BD simulations
(black-solid line) and DDFT (red-dashed line) at reduced time
t∗ = ts/τB=0.5 (top), and 1.0 (bottom) for a system initial-
ized in a parabolic trap. b) Adiabatic force calculated from
BD simulations (black-solid line) and DDFT (red-dashed line)
at reduced time t∗=0.1 (top), and 0.2 (bottom) for a system
initialized in a crystal structure.

according to DDFT reads

ξ
∂ρ(1)(x, t)

∂t
=
∂2ρ(1)(x, t)

∂x2
+

+
∂

∂x

[
ρ(1)(x, t)

(
ρ(1)(x+ σ, t)

1− η(x+ σ/2)
− ρ(1)(x− σ, t)

1− η(x− σ/2)

)]
+

∂

∂x

(
ρ(1)(x, t)

∂Vext(x, t)

∂x

)
. (7)

The comparison between simulation and DDFT results
for the density are shown in Fig. 1 of the the main article.
Figure 2a,b show the same comparison comparison for
the computed adiabatic contribution.

MEASUREMENTS OF THE CURRENT IN
BROWNIAN DYNAMICS SIMULATIONS

In order to measure the current in Brownian dynam-
ics simulations we solve the one dimensional continuity
equation

∂ρ(1)(x, t)

∂t
= −∂Jx(x, t)

∂x
. (8)

The average

〈∂ρ
(1)(x, ts)

∂t
〉 ' 〈∆ρ

(1)(x, ts)

∆t
〉

is computed over 106 independent trajectories at a fixed
time ts.

In order to carry out the calculation, we divide the one
dimensional simulation box in bins of length xbin and
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Figure 3. Evolution in time of the superadiabatic force
I∗sad(xpeak) = Isad(xpeak)σ2/kBT at densities ρσ = 0.4 (green
squares, Lx = 25σ) and ρσ = 0.67 (blue circles, Lx = 15σ).

accumulate the histogram of the local density changes

∆ρ(1)(x, ts) =
n(x, ts)− n(x, ts −∆t)

xbin
,

where n(x, t) is the number of particles located in the bin
at position x and time t. The density histogram is then
divide by the sampling time interval ∆t.

Once the average is calculated the current is obtained
with the following integration

Jx(x, t) = −
∫ x

0

dx′〈∆ρ
(1)(x′, ts)

∆t
〉 . (9)

SUPERADIABATIC FORCE

The total pair force integral I(r, t) = Iad(r, t) +
Isad(r, t) is represented as the sum of an adiabatic term
Iad(r, t), which contains all contributions that can be de-
scribed by an equilibrium system, and a superadiabatic
term Isad(r, t), which contains contributions that can
not be reduced to an equilibrium description. Therefore
for all equilibrium states the superadiabatic contribution
vanishes. Figure 3 shows the evolution in time of the su-
peradiabatic force at the density peak position xpeak for
the system initialized in a crystal structure. The supera-
diabatic contribution is zero for the equilibrium configu-
rations at t∗ = 0 and t∗ →∞. At intermediate times the
curve is characterized by a maximum at short times and
by an exponential decay of the force at longer times.
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