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Mesophase formation in a system of top-shaped hard molecules: Density
functional theory and Monte Carlo simulation
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We present the phase diagram of a system of mesogenic top-shaped molecules based on the Parsons-
Lee density functional theory and Monte Carlo simulation. The molecules are modeled as a hard
spherocylinder with a hard sphere embedded in its center. The stability of five different phases is
studied, namely, isotropic, nematic, smectic A, smectic C, and columnar phases. The positionally
ordered phases are investigated only for the case of parallel alignment. It is found that the central
spherical unit destabilizes the nematic with respect to the isotropic phase, while increasing the length
of the cylinder has the opposite effect. Also, the central hard sphere has a strong destabilizing effect
on the smectic A phase, due the inefficient packing of the molecules into layers. For large hard sphere
units the smectic A phase is completely replaced by a smectic C structure. The columnar phase is
first stabilized with increasing diameter of the central unit, but for very large hard sphere units it
becomes less stable again. The density functional results are in good agreement with the simulations.
© 2011 American Institute of Physics. [doi:10.1063/1.3596749]

. INTRODUCTION

Understanding the relation between molecular structure
and macroscopic properties is a very important issue, be-
cause many practical applications require precise tailoring
of the phase behavior. Nowadays very complex mesogenic
molecules are available to study the link between the observed
mesophases and the molecular structure.! For example, meso-
genic (rod, plate) and non-mesogenic (sphere, flexible poly-
mer) building blocks can be attached together to study the
role of different parameters, such as the shape anisotropy,
the polarizability, and the flexibility in the stabilization of
liquid crystalline phases. The only problem with these com-
plex molecular formations (for example: rod-coil, coil-rod-
coil molecules) is the presence of very complex interactions
between the different building blocks, which do not allow us
to identify the separate roles of different molecular interac-
tions in the stabilization of the mesophases. One way to over-
come this problem is to construct model systems that can be
studied by theory and simulation.

Rod-shaped molecules, such as hard spherocylinders
have been shown to self-assemble into a rich variety of dif-
ferent liquid crystalline structures through the anisotropic re-
pulsive interactions. The mesophases include nematic, smec-
tic A, and solid phases.” The shapes of many mesogenic
particles, such as some metallomesogenic molecules® and
fullerene containing calamitic liquid* crystals are closer to
top-shaped bodies. The use of hard body models for these
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molecules helps us to understand the role played by the steric
repulsive forces in the stability of different mesophases.

The first theoretical work on top-shaped molecules,
which was devoted to studying the effect of varying the cen-
tral sphere diameter on the nematic and smectic A phases,
was done by Cinacchi.’ In this study the central core is
modeled as a soft sphere and the Parsons-Lee® extension
of the Onsager theory’ is applied. Interestingly, it is found
that making the central core bulkier can enhance the sta-
bility of the nematic and smectic A phases. Luckhurst®
studied a thermotropic system of spherocylinders with an
embedded sphere using a Monte Carlo (MC) simulation. In-
stead of stabilization of the smectic A phase, the system
stays in the nematic phase, and a strong tendency for form-
ing a tilted smectic phase is observed. In the study of Kim
et al’ the phase behavior of 11-site Lennard-Jones (LJ) lin-
ear molecules is examined using molecular dynamic simula-
tion. Instead of one central LJ sphere, three LJ sites are cho-
sen in the centre of the rodlike molecule to make it more
bulky. It is found that interdigitated smectic order replaces
the conventional smectic A phase. Very recently fullerene
containing triblock mesogens (a central fullerene with two
mesogenic groups) has been examined by Orlandi et al.,'”
where the stabilization of the smectic order is detected in a
layered structure such that the fullerene spheres and meso-
genic rods are microsegregated. In several theoretical stud-
ies an attractive square-well site is placed in the centre of
the mesogenic unit to see the effect of the square-well radius
on the stability of the isotropic-nematic and nematic-smectic
phase transitions. Nematic-nematic phase transition,!' sta-
bilization of the smectic ordering,12 and nematic re-entrant
behavior'® are observed. The model has been applied
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successfully for p-azoxianisol.'* What the above studies have
in common is that the systems are thermotropic, which does
not allow us to extract the effect of purely steric forces. True
hard body models that resemble top-shaped bodies are quite
rare in the literature. Casey and Harrower'” studied the stabil-
ity of the smectic A and C phases in the system of coil-rod-
coil triblock particles on a lattice using Monte Carlo simula-
tion. They found that the smectic order can be stabilized by
flexible terminal chains attached to the end of the mesogenic
hard body. In a recent study, Varga and Fraden'® studied the
phase behavior of the triblock hard mesogens where the par-
ticle consists of three hard cylinder segments of different di-
ameters. The main result of this work is that smectic C phase
formation can be induced by increasing the diameter of the
central mesogenic unit.

The goal of the present work is to study the effect of a
central non-mesogenic unit in the formation of mesophases
in a system of hard spherocylinders with an embedded hard
sphere. As the spherical shape does not favor the liquid crys-
talline order, the central hard sphere will have a major influ-
ence on the phase behavior of the system. Our top-shaped
hard body model makes it possible to determine explicitly
the role played by the mesogenic (spherocylinder) part and
the non-mesogenic unit (sphere) in the stability of different
mesophases.

The paper is organized as follows. The molecular model
is presented in Sec. II; Sec. III is devoted to the Parsons-
Lee theory of inhomogeneous hard body fluids. We show
how to implement the free energy calculations for the ne-
matic, smectic, and columnar phases in Secs. Il A—III C.
Technical details of the Monte Carlo simulation are given in
Sec. IV. The phase diagram of the system of top-shaped
molecules and the bulk properties of smectic and columnar
phases are presented in Sec. V. Finally, some conclusions are
drawn in Sec. VL.

Il. MOLECULAR MODEL

We model the top-shaped molecule as a hard spherocylin-
der with an embedded hard sphere as shown in Fig. 1. The
hard spherocylinder, which is a mesogenic unit, consists of
a cylindrical core (length L and diameter D) and two hemi-
spheres with diameter D enclosing the ends of the cylinder.
The hard sphere with diameter (o), which is a non-mesogenic
unit, is placed at the center of the cylinder, which makes the
top-shaped molecule symmetric. The diameter of the central
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FIG. 1. Hard body representation of a symmetric top-shaped molecule, con-
sisting of a hard spherocylinder of cylinder length L and diameter D and an
embedded hard sphere of diameter o placed in the center of the mesogenic
unit.
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FIG. 2. Schematic representation of isotropic (a), nematic (b), smectic A (c),
smectic C (d), and columnar (front view: (e), top view: (f)) phases.

unit is higher than the diameter of the cylinder (o >D). With
this particle shape we assume that only hard body interactions
act between the particles. This means that all types of pairwise
overlaps, such as the rod-sphere, rod-rod, and sphere-sphere
are forbidden. In the description of the isotropic-nematic
phase transition the top-shaped molecules are freely rotat-
ing, while for the treatment of the nematic-smectic, nematic-
columnar, and smectic A-smectic C phase transitions the
molecules are assumed to be perfectly aligned in the direc-
tion of the nematic director. The examined mesophases are
shown schematically in Fig. 2.

lll. DENSITY FUNCTIONAL THEORY

According to the Parsons-Lee extension of the second
virial density functional theory (DFT), the free energy of an
inhomogeneous hard body system can be written as a sum of
ideal and excess contributions BF = BF;; + B F,,, where

BFy = / d(Dp(DlIn p(1) — 11, (1)
BFu = x / d(Dp(1) f d(2) p(2). P
rn€O0OR

In these equations § = 1/kgT (kp being the Boltzmann con-
stant and 7 being the temperature), po(1) is the local number
density, (i) = (v;, @;) is an abbreviation for the position and
orientation of the particle i, and x = (4 — 31)/(8(1 — n)?) is
the Carnahan-Starling prefactor. The packing fraction of the
system is defined as n = pvo, where p = N/Vis the num-
ber density and vy is the volume of the particle. In Eq. (2),
r12 € O R means that the distance between two particles (1)
must be in the overlap region as the particles are modeled as
hard bodies. Using the symmetry properties of the examined
mesophases, the free energy can be simplified substantially.
In Secs. III A—IIT C we present the suitable form of the ex-
cess free energy for nematic, smectic, and columnar phases
only, while the reformulation of the ideal free energy term for
different mesophases is not discussed here as it is a simple
problem.
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A. Isotropic and nematic phases

The main feature of the nematic phase is that the local
density is position independent, i.e., p(1) = p(®) and the spa-
tial integrals of Eq. (2) can be performed in advance. As a
result, the excess free energy density becomes

BFe/V = X/dﬁ)lp((ﬁl)/da)zp (@) Vexe (0102), 3

where the excluded volume between two particles with ori-
entation @; and w, is defined as V,,. (01@,) = fmeOR dris.
In the isotropic phase the above equation is even simpler as
the local density is constant p(1) = p/4mw. As we are only
interested in the determination of the stability limit of the
isotropic with respect to the nematic phase, we simply perturb
the isotropic density with the most dominant nematic func-
tion, which is the well-known second Legendre polynomial
(P5). Therefore, the perturbed local density takes the form
p(1) = p/4n(1 4 e P,(cos 8)), where ¢ is an infinitesimally
small number and 6 is a polar angle measured from the ne-
matic director. Substitution of the perturbed local density into
Egs. (1) and (3) and expansion of the total free energy up
to the first non-vanishing term in ¢ gives the so-called bifur-
cation equation for the isotropic-nematic phase transition.!”
Without going into the details we present the final equation
for the packing fraction of the isotropic-nematic bifurcation,
which is given by

24x—/2+x2—x(B+x)
3+ x ’

niN = 4)
where x = —20vg/Virer and  Voep =5 fon/z dysiny
Vexe(¥) Pa(cos y). Note that Eq. (4) is valid for any hard body
shapes, since the only input is the volume of the particle
(vo) and the excluded volume (V,,.). In some special cases,
such as the spherocylinder shape, the excluded volume is an
analytical function of the angle between two particles (y).
However, for the top-shaped body we have been forced to
determine it numerically due to the complicated form of the
sphere-sphere, sphere-rod, and rod-rod overlap regions.

B. Smectic A and C phases

A common feature of the untilted (A) and tilted (C)
smectic phases is that the long ranged orientational order
is accompanied by a one-dimensional positional order, i.e.,
the molecules are arranged in layers. The main difference
between the tilted and untilted phases can be measured by the
tilt angle (W), which is the angle between the layer normal
and the nematic director. For the smectic A phase the tilt angle
is zero, while it is in the interval 0 < ¥ < 90° for the smectic
C phase. In our study we use the perfect orientational order
approximation for the description of positionally ordered
phases. This means that the particles’ long axes are always
parallel and they all point in that special direction which
forms an angle W with the z axis of the Cartesian coordinate
system. With this condition, the positional ordering takes
place always in the direction of the z axis, while the fluid
structure survives in the x-y plane for both smectic structures.
The mathematical form of this approximation for the local
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number density can be written as p(7, @) = p(z) 8(6 — W).
Exploiting the periodic property of the local density,
i.e., p(z) = p(z + dp), where dj is the smectic period (or
wavelength), the excess free energy density becomes

dy
ﬂﬂdv=§/ﬁmﬂm)/1dbMQMm@mW% )
0 0 z12€O0R

where A...(z, V) = lezeokdﬁu is the excluded area of
the overlap region at a given z separation. Note that the
excluded area also depends on the tilt angle (), because
the area of the slices cut out from the excluded volume is
orientation dependent. However, the integral of the excluded
area along the z axis must be independent of the tilt angle as
vl = Jocor d2Acxc(z, W) is the excluded volume between
two parallel molecules. To decide between the positionally
disordered nematic phase and the smectic phases, one has to
minimize the free energy with respect to the local number
density and the tilt angle. To do this, we parameterize the
density distribution with the following simple function: '8
§(2) = pdo— exp[A cos(2r z/dp)] ’ ©)
[ dz’ exp[A cos(2m 2 /dy)]
0

where A measures the sharpness of the density peak. With
this density ansatz the total free energy, which is now the sum
of Egs. (1) and (5), is a function of A, dy, and V. Therefore,
the problem reduces to the minimization of the free energy
with respect to these three parameters. Note that the ideal free
energy term (Eq. (1)) favors the uniform density distribution,
while the excess free energy (Eq. (5)) can reach very low
values by proper packing of the particles along the z-axis.
As a result, a subtle competition between the ideal and the
excess free energies determines the stability of the smectic
phases with respect to the nematic structure. The input of
the minimization procedure is the excluded area, which is
determined numerically at any tilt angle.

C. Columnar phase

In the columnar phase the molecules are orientationally
ordered and form a two-dimensional lattice. The most effi-
cient two-dimensional packing can be achieved by a hexag-
onal structure, since the cross section of the molecule is a
circle. Again we use the parallel approximation for the ori-
entations of the particles’ long axes, but we assume a hexago-
nal soliq structure in the x-y plane, i.e., p(¥, ®) = p(R) §(8),
where R is a position vector in the x-y plane. Note that the
particles are not tilted in this phase. Using the fact that the
system is uniform along the z axis, it is easy to show that the
excess free energy density is

/ d]_é2/0(f\;2)dexc(R12)»

R;,€OR

ﬁEdV=%/dEmﬁ)
A

@)

where d... (R) = f dz is the excluded distance be-

z€OR
tween two particles and A = \/§d§/2 is the area of the
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hexagonal unit cell. The relationship between the ex-
cluded distance and the parallel excluded volume isVe')‘m =
fReOR dR d,..(R), which shows that Eq. (7) gives the same

nematic free energy in the uniform limit (p(ﬁ) = p) as the
smectic free energy does in the same limit (Eq. (5)). The ex-
cluded distance is an analytic function, but it has three differ-
ent intervals due to the rod-rod, rod-sphere, and sphere-sphere
exclusions. It is easy to show that

dexc(R)
2L +2+/D? — R2, 0<R<D
=1L+2/(c+D)?/4—R?>, D<R<(D+0)/2.
202 — R?, (D+0))2<R<o
(3)

For the columnar order we resort to a two-dimensional Fourier
expansion of the density distribution and we minimize the free
energy with respect to the Fourier coefficients and the wave
number (or dp). Considering the inversion symmetry of the
columnar phase (p(ﬁ) = p(—ﬁ)), the density distribution is
represented by

p(R) = p Z Ji cos[kR], )
i

where f; is the Fourier coefficient and k is the wave vector.
The details of the minimization procedure can be found in
our previous paper.'” As in the case of smectic ordering, the
competition between the ideal gas contribution (Eq. (1)) and
the excess free energy term (Eq. (7)) determines the stability
of the columnar phase with respect to the nematic structure.
Furthermore, the stability of the columnar phase with respect
to smectic A and C phases can be determined from the com-
parison of the free energy values at a given packing fraction,
since the free energies of smectic and columnar phases reduce
to the nematic values in the uniform limit of the local density.

IV. MONTE CARLO SIMULATIONS

To test the theoretical predictions regarding the nematic-
smectic transition we perform a series of constant pressure
MC simulations.”’ Model systems of N = 256 parallel (i.e.,
“nematic”) top-shaped particles are studied. The spherocylin-
der width is kept at D = 1 and the cylinder length is L =9, so
that the total particle length is L + D = 10 in all cases, while
the central unit diameter is varied. The side ratio c,/c, of the
square prism (¢, = c,) simulation cell is kept constant, with
the z extension such that it will accommodate just four layers
at the expected smectic density. The pressure is slowly incre-
mented such that the packing fraction is increased from 0.1
to a value well beyond the respective phase transition density,
i.e., n &~ 0.7 for the small diameter systems and n & 0.5 for o
= 1.8-1.9 D. At each pressure 10° MC cycles are performed,
where each such cycle consists of N trial particle moves and
one attempted volume change.

The expected structural phase transitions are diagnosed
by means of the dominant Fourier modes of the local parti-
cle density. Let p(k) = 1/V 3| exp[—ik7;] with V = cc;
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denote the Fourier component of the one particle density cor-
responding to a Fourier vector k = 2m(ky/cy, ky/cx, k;/c;),
where k,, ky, and k; are integers. The periodic boundary con-
ditions allow for certain discrete Fourier modes of the den-
sity. The zero vector is excluded, and for symmetry reasons
one of the components, say k,, may be restricted to positive
values. For the same reason, if k;, = 0, then we choose k,
> 0, and if k;, = k, = 0, then we let k, > 0. Considering
these selection rules the total number of relevant Fourier vec-
tors is K = ((2ko + 1)* — 1)/2, where kg is an arbitrary upper
limit for the absolute value of k,, ky, and k.. We have chosen ko
=5, which yields a number K = 665 of Fourier modes that are
monitored at all times. Any inhomogeneity in the system will
be indicated by enhanced values of structure factors pertain-
ing to certain wave vectors. Writing p(k) = p'(k) — jp”(lz),
the normalized structure factor S(k) = [o'(k)* + p"(k)*]/p>
may vary between 0 and 1. If S(k) is small, the structure is
more or less homogeneous along the respective k. Smectic
layering announces itself by a high value of some § (%), where
k is now the wave vector along the layer normal. If k points
along the z axis we have a smectic A, otherwise we have a
smectic C phase.

V. RESULTS

First we present the results of the free energy minimiza-
tions and the phase coexistence calculations. In the case of the
isotropic-nematic phase transition, Eq. (4) yields the spinodal
instability curve between the two phases. The free energies of
the smectic and columnar ordering are obtained by minimiza-
tion with respect to the variational parameters, such as the pe-
riod (dy), tilt angle (W), and Fourier amplitudes (1, f;). In the
case of first order phase transitions, the coexisting densities
of phases o} and o, are determined from the phase bound-
ary conditions for the pressure (P = —dF/dV) and chem-
ical potential (u = dF /dN), which are P(o;) = P(x;) and
u(ay) = p(ap). On the other hand, the transition density of
second order phase transitions, such as nematic-smectic A is
given by the lowest density at which the smectic amplitudes
vanish first, i.e., the inhomogeneous fluid becomes homoge-
neous. The results of the phase boundary calculations are col-
lected in Fig. 3. Two molecular parameters govern the stabil-
ity of the mesophases, one is the central sphere diameter (o),
while the other is the aspect ratio (L/D) of the mesogenic
unit. As Fig. 3 shows, o is responsible for the formation of
columnar and tilted structures, while a sufficiently large shape
anisotropy or aspect ratio (L/D) is very crucial in the stabi-
lization of all mesophases. First of all we investigate the role
of the aspect ratio in the phase diagrams. Comparison of the
four panels of Fig. 3 demonstrates that the aspect ratio has
to exceed five in order to stabilize the smectic and colum-
nar phases. For example, for L/D = 9 and o/D = 1, which
is the hard spherocylinder shape, the phase sequence is the
usual isotropic, nematic, smectic, and columnar. This is al-
most the same phase sequence as for freely rotating sphero-
cylinders, since only the columnar phase is replaced by the
solid phase due to the orientational fluctuations which are ne-
glected in our calculations. Regardless of the value of the cen-
tral sphere diameter, increasing the aspect ratio stabilizes the
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c/D

FIG. 3. Effect of varying the hard sphere diameter (o) on the phase transition of top-shaped molecules in the n-o/D plane for aspect ratios (L /D) of 5 (a), 9 (b),
13 (¢), and 17 (d). The dashed curve represents the continuous nematic-smectic phase transitions, the dotted-dashed curve is the border between the isotropic
and nematic phases as computed by bifurcation analysis, and the solid curves show the binodals between nematic, smectic, and columnar phases. The shaded
areas are the two-phase regions. The squares indicate the position of the critical end points. The isotropic, nematic, smectic A, smectic C, and columnar phases

are denoted as 1, N, Smy, Smc, and C, respectively.

nematic phase with respect to the isotropic one, as the particle
becomes more anisotropic. In the limit of L/D— oo the coex-
isting packing fractions of the isotropic-nematic phase transi-
tion go to zero,” which creates very wide density regions for
the mesophases. Interestingly, the aspect ratio has a small ef-
fect on the stability regions of the observed smectic A, smec-
tic C, and columnar phases. It moves the regions of smectic
A and smectic C phases in opposite directions by enhancing
the stability region of the columnar ordering. The effect is
more pronounced on the smectic C side, where the smectic
C - columnar binodal moves in the direction of lower pack-
ing fractions. In the context of the above arguments we must
mention that the isotropic-nematic phase transition is weakly
first order, so the coexisting isotropic and nematic densities
almost coincide with the presented spinodal curves.

Now we turn to the effect of the central sphere unit on
the stability of mesophases. One can see that increasing /D
has a strong effect on all transitions irrespective of the value
of the aspect ratio. The nematic phase is destabilized with
respect to the isotropic one with o/D, because the molecule
becomes more spherical and the packing entropy gain by
orientational ordering is smaller. The same effect can be
observed in the case of the smectic A phase. With increasing
o there is less room for the particles in the layers to form a
two-dimensional fluid and the packing of the mesogenic units
is less efficient. This is due to the fact that the rod-sphere pairs
do not match in the layer and the spheres give rise to extra
unoccupied regions in the layers. As a result, the formation
of the smectic A phase is shifted in the direction of higher
density, and its stability range shrinks due to the formation of
a columnar structure. The stabilization of the columnar order

is also plausible, because the tendency of decreasing in-plane
fluidity favors the formation of a two-dimensional solid
structure in the layers. In addition, with increasing sphere
diameter there is more room between the adjacent mesogenic
units, which favors the fluidization of the system in the
direction perpendicular to the solid layers. With increasing
diameter the stabilization of the columnar phase is so strong
that the smectic A phase completely disappears and a direct
nematic-columnar phase transition takes place for o/D
> 1.2. However, further increase of o is not favorable for the
columnar phase, because the distance between the neighbor-
ing columns is of the order of o, which also gives rise to large
unoccupied regions in the space, i.e., the system cannot pack
efficiently in the columnar phase with large central spheres.
Therefore, the system tends to be a new structure where it can
preserve its fluidity to some degree and pack more efficiently.
This structure is the smectic C phase, where the mesogenic
units are tilted such that they almost lie inside the layer. With
this arrangement the system becomes more packed as the
mesogenic units get closer to each other and, in addition, the
system becomes a two-dimensional fluid again. It can be seen
in Fig. 3 that with further increase of o/D the tilted smectic
structure becomes stable, while the region of the columnar
phase moves to higher packing fractions. From these results
we can conclude that the hard body shape has a very strong
influence on the stability of different mesophases.

The stability of smectic ordering was also checked by
NpT Monte Carlo simulation. By searching for the highest
value of the structure factor S;,,x and the corresponding wave
vector it is possible to distinguish the nematic and smectic
phases. In the simulation some criterion is needed to define
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FIG. 4. The largest Fourier mode of the density correlation (Smax) as a func-
tion of packing fraction for o/D =1, 1.02, 1.04, and 1.06 (a) and /D = 1.80,
1.85, and 1.90 (b). The curves are the results of NpT Monte Carlo simulation.
The aspect ratio (L/D) is 9.

the boundary of the smectic phases. We consider the phase as
smectic A if the dominant density mode is along the z axis,
and the respective structure factor Sp,x exceeds a value of
0.1. The latter condition may seem arbitrary, but experience
shows that (a) the dominant wave vector, which is changing
randomly at lower values of Sy,.x, becomes robust and parallel
to the z axis as soon as Spy.x > 0.1; and (b) the rise of Sy« 1S
so steep that the exact threshold value is of no importance. In
contrast to smectic-A, the onset of the smectic-C phase was
accompanied by a noticeable density jump at a given pres-
sure. This is surprising, since the transition is also expected
to be of second order. A possible explanation is the discrete
distribution of allowed Fourier modes in the finite, periodic
simulation cell. It appears that within a few compression steps
the tilted layers are "locking in" with one of these modes, re-
sulting in a simultaneous rise of the packing fraction and the
structure factor. We use the values of n immediately before the
steep rise to define the nematic-smectic C transition density.
Figure 4 shows the density dependence of the structure factor
for o/D = 1.0, 1.02, 1.04, and 1.06 (a) and for /D = 1.80,
1.85, and 1.90 (b) (in all cases we set L/D = 9). In panel (a)
we can see that the smectic phase has lower and upper bounds
in all cases. The wave vector (I;) points along the z axis, and
therefore the lower bound is due to the second order nematic-
smectic A phase transition as Sy,,x increases smoothly from
zero, while the upper bound is a first order phase transition be-
tween the smectic A and the columnar phases. Note that Spax
jumps suddenly and there is also a jump in the equation of
state at the upper bound. This is an indication of the first order
character of the smectic-columnar phase transition. It can be
seen in Fig. 4(a) that the density range of Sy,x > 0.1 shrinks
with increasing diameter of the central core, i.e., the smectic
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TABLE I. Diameter (¢/D) dependence of the stability range of the smec-
tic A phase. The data are the results of NpT Monte Carlo simulation (MC)
and those of density functional theory (DFT). n is the packing fraction (we
include the range where smectic ordering may be observed) and do/D is the
smectic period. The aspectratiois L/D = 9.

MC DFT
o/D n do ID n do ID
1.00 0.44-0.66 11.5-9.9 0.34-0.56 13.52-12.13
1.02 0.45-0.60 11.2-10.2 0.34-0.54 13.50-12.24
1.04 0.46-0.57 11.0-10.3 0.35-0.51 13.47-12.33
1.06 0.47-0.53 10.9 -10.5 0.35-0.50 13.44-12.42

A phase becomes less stable as o gets larger. The results of
the Monte Carlo simulations for small diameters of the central
unit are collected together with the corresponding DFT results
in Table I, where we can see that the smectic phase can be
destabilized with respect to nematic and columnar phases by
increasing the diameter of the central core. Comparison of the
simulation and theoretical results shows good agreement. In
addition, the failure of our mean field density functional the-
ory can also be seen in Table I, as the upper and lower borders
of the smectic A phase are underestimated and the smectic
period is too large. This is due to the misrepresentation of the
density correlations in our theory. The recent study of Capitin
et al.>' shows that the inclusion of the density correlations into
the theory does help to get a better equation of state and smec-
tic period, but it does not improve the phase diagram. This was
demonstrated in the system of parallel hard cylinders, which
is very close to our systems with 6/D = 1. As mentioned be-
fore, we have also performed Monte Carlo simulations in a
system of particles with L/D = 9 and o/D > 1.8 to check
the prediction of our DFT study for the stability region of the
smectic C phase. Panel (b) of Fig. 4 shows that Sp,.x increases
steeply as the density is increased beyond the transition point
and then levels off. The wave vector is now pointing along
directions different from the z axis (see Table II), as it corre-
sponds to the formation of a tilted smectic phase instead of
an untilted one. The nematic-smectic C transition properties
of the MC simulations and DFT calculations are compared in
Table II. The agreement is surprisingly good for the packing
fractions and tilt angles, which may be due to the fact that the
dominant interaction in the tilted layers is the hard sphere-
hard sphere exclusion, which is accurately represented by the

TABLE II. Summary of the Monte Carlo simulations and the density func-
tional calculations of a system of top-shaped particles with L/ D =9. The di-
ameter of the central unit (¢/D), the packing fraction at the nematic-smectic
C phase transition (1), the integer components of the wave vector (kx,ky.kz),
the tilt angle (W), and the smectic period at the nematic-smectic C phase
transition (dy/D).

MC DFT
o/D n kxlkylk, — W(deg)  do /D n W(deg) do/D
1.80  0.44 -5/2/4 80.6 1.9 0.43 80.14 251
1.85 043 -3/5/4 81.3 1.8 0.42 80.12 2.53
190 043 =5/2/4 80.6 1.9 0.42 80.09 2.55
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FIG. 5. Smectic or columnar period (dgp) vs. the diameter of the central
hard-sphere (¢/D) along the transition curve between nematic and position-
ally ordered phases in the system with L/D = 9.

Carnahan-Starling prefactor in the theory. However, the lack
of proper inclusion of the density correlations is still present,
because the smectic period is again overestimated. Another
important difference is that we have not found an upper limit
for the stability of the smectic C phase using MC simulations,
i.e., no smectic C-columnar phase transition is observed by
increasing the density. If present, the columnar phase appears
at higher densities than those tested in our simulation. It is
also plausible that the columnar phase is not stable for these
values of o. The phase diagrams depicted in Fig. 3 show that
at a given aspect ratio there is probably a maximum o for
which a columnar phase can be found (a possible vertical
asymptote).

Now we turn to the discussion of the structural properties
of the smectic and columnar phases along the transition
curves, and we also examine the density dependence of these
properties. The smectic (columnar) period is an important
parameter because it reflects the average distance between
the neighboring layers (columns). The values of d; at the
nematic-smectic and nematic-columnar phase transitions are
shown in Fig. 5 for a system of particles with L/D = 9
and various o. It can be seen that the smectic A phase has
the usual layered structure with a period that is proportional
to the length of the mesogenic unit (L). The effect of the
increasing diameter (o) is to decrease the smectic period,
i.e., the neighboring layers get closer to each other. This
is quite reasonable because the average distance between
the mesogenic units inside the layers increases with o, i.e.,
the system can pack more efficiently if the particles of the
neighboring layers are closer to each other. Interestingly, we
have not observed strong interdigitations between the layers.
In the case of 11-site LJ top-shaped rigid particles, Kim
et al.” have observed, for o/D > 1.7, smectic periods of half
the mesogenic length. The reason why they could observe
such strong interdigitation of the layers may be attributed to
the fact that 3 large LJ sites in the middle of the linear array
strongly favor a side-by-side parallel arrangement instead
of the slipped parallel one, i.e., the model of Kim et al.
prefers the smectic A phase to smectic C phase even for very
large o.

The next phase along the phase coexistence curve is the
columnar structure (Fig. 5). We can see that the columnar
period is now in the order of o, which is not surprising as the
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FIG. 6. Tilt angle of the smectic C phase (V) vs. diameter of the central hard-
sphere (o/D) along the nematic-smectic C phase transition curve for different
aspect ratios (L /D).

interactions between the columns are dominated by the hard
body exclusions between the central spherical units. This
argument is supported by the fact that the columnar period is
a more or less linearly increasing function of o. At higher o
the columnar phase is replaced by a tilted smectic ordering.
In this phase the smectic period is very low, but it is always
higher than the columnar period. Interestingly it depends only
weakly on the diameter of the central unit but strongly on the
length of the mesogenic unit. This effect can be understood
by examining the aspect ratio dependence of the tilt angle
along the nematic-smectic C phase transition (See Fig. 6). In
all studied cases the tilt angle increases first with o and then
starts to decrease. It can be seen also that the aspect ratio has
a strong influence on the tilt angle and consequently on the
smectic period. With increasing the length of the mesogenic
unit the particles are more tilted with respect to the layer nor-
mal. This effect may be induced by the hard bodies staying
in the interstitial regions as the interstitial particles exclude
a smaller volume in the neighboring layers if the particles
are more tilted. This is especially true for longer mesogenic
units. Therefore, the molecular parameter dependence of
the tilted smectic structure (tilt angle and smectic period)
is a complicated interplay between the in-layer packing
and the interlayer packing tendencies. The packing fraction
dependence of the smectic and columnar periods is more un-
derstandable (see Figs. 7 and 8). The period of both smectic A
and columnar phases decreases with increasing density. This
is simply a consequence of the fact that the only way to pack
more particles into very dense layers (columns) is to decrease
the distance between the neighboring layers (columns). In the
case of a tilted smectic phase, not only the compression of
the layer thickness helps to increase the packing fraction, but
the increasing tilt angle can also give rise to extra free room
for the particles to accommodate in. Therefore, the smectic
period is a decreasing function of the packing fraction, while
the tilt angle increases with it (Fig. 8). Finally, in Fig. 9
we show the density profiles of the positionally ordered
phases at the same packing fractions and aspect ratio of the
mesogenic unit (L /D = 9), but at different sphere diameters.
Comparison of the smectic A and C density profiles shows
not only the differing smectic periods, but also the difference
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FIG. 7. Packing fraction dependence of smectic A and columnar periods
(dgp) in the system with L/D = 9 and o/D = 1.1. Note the broken scale
on the vertical axis.

in the sharpness of the peaks. While the smectic A ordering is
very peaked, the tilted smectic structure is accompanied by a
smooth density distribution with a nonzero interstitial density.
This also proves that the structure of the smectic C phase
(tilt angle and the smectic period) is strongly affected by the
interstitial particle-mediated interactions between neighbor-
ing layers. In addition, it can be seen that the structure of
the columnar phase is hexagonal; the density profile is very
peaked; and very few particles stay between the columns.

22 1 n 1 n 1 n 1 n 1

81.5

81

Y (deg)
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80 0.4 0.45 0.5 0.55 0.6

FIG. 8. Packing fraction dependence of the period (dgp) and the tilt angle
(W) in the system with L/D = 9 and o/D = 1.9 are shown in (a) and (b),
respectively.
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FIG. 9. Local packing fraction of the smectic A (a), columnar (b), and smec-
tic C (c) phases for the aspect ratio L/D = 9 and packing fraction n = 0.45.
The diameter of the central hard sphere (6/D) is 1.1 in panel (a), 1.5 in panel
(b), and 1.9 in panel (c).

VI. CONCLUSIONS

In this paper we have studied the effect of varying
the central hard sphere diameter on the mesophase forming
ability of uniaxial hard rod-fluids. Our theoretical calcula-
tions and simulation study show that the non-mesogenic cen-
tral unit destabilizes both the nematic and smectic A phases.
With increasing sphere diameter the top-shaped particle be-
comes more spherical, and the packing entropy gain arising
from orientational and positional ordering becomes less with
respect to the loss of orientational entropy, i.e., the nematic
and the smectic ordering takes place at higher packing frac-
tions. However, the spherical central core gives rise to the for-
mation of columnar and smectic C ordering. The columnar
phase is very stable in the interval of 1.2 < o/D < 1.7 with
a first order phase transition from the nematic phase, while
the smectic C phase becomes stable for 6/D > 1.7 for most
of the studied aspect ratios. The shape and size incompati-
bility between the spherical and rodlike units is the source of
the detected phase behavior. The rodlike units attempt to form
layers, but the spheres make the layers too spacious. Conse-
quently, the columnar phase becomes more packed and stable
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than smectic A. However, the packing efficiency of colum-
nar ordering depends very sensitively on the diameter of the
central unit, i.e., the columnar order becomes less packed for
larger diameters, and the system undergoes a phase transition
from nematic to smectic C. We expect these mesophases to
be absolutely stable, although we should bear in mind that
solid phases may appear in the system at high enough densi-
ties, and could partially modify the phase diagrams reported
in this paper.

Our results show that hard body models of mesogenic
systems are able to account for the effect of increasing central
core on liquid crystalline order. In agreement with our find-
ings, the replacement of hydrogen atoms in the central core
of mesogenic molecules with bulkier groups (e.g., methyl,
ethyl, NO;) generally results in the destabilization of ne-
matic and smectic A phases.?? In addition, it is shown in the
recent experimental study of Tian e al.>® that the stability
of mesophases depends very sensitively on the central core.
The phase behavior of three-segment coil-rod-coil molecules
shows dramatic changes when lateral methyl or ethyl groups
are added to the centre of the mesogenic molecule. In the case
of methyl groups hexagonally perforated layers are formed,
while the ethyl group gives rise to columnar order.>* In some
cases tilted layered structures are also found. Even though
our molecular model is simple, it produces quite reason-
able explanations for the observed phase behavior of bulky
mesogens.
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