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We calculate the network fluid regime and phase diagrams of binary mixtures of patchy colloids, using

Wertheim’s first order perturbation theory and a generalization of Flory–Stockmayer’s theory of

polymerization. The colloids are modelled as hard spheres with the same diameter and surface patches

of the same type, A. The only difference between species is the number of their patches – or

functionality – f(1)A and f(2)A (with f(2)A > f(1)A ). We have found that the difference in functionality is the key

factor controlling the behaviour of the mixture in the network (percolated) fluid regime. In particular,

when f(2)A $ 2f(1)A the entropy of bonding drives the phase separation of two network fluids, which is

absent in other mixtures. This drastically changes the critical properties of the system and drives

a change in the topology of the phase diagram (from type I to type V) when f(1)A > 2. The difference in

functionality also determines the miscibility at high (osmotic) pressures. If f(2)A � f(1)A ¼ 1, the mixture is

completely miscible at high pressures, while closed miscibility gaps at pressures above the highest

critical pressure of the pure fluids are present if f(2)A � f(1)A > 1. We argue that this phase behaviour is

driven by a competition between the entropy of mixing and the entropy of bonding, as the latter

dominates in the network fluid regime.
I. Introduction

Recent advances in the engineering of well-defined colloidal

particles, with designed surface patterning in the nanometre-to-

micrometre range, open up the possibility of tailoring their

behaviour at the macroscopic level.1–6 The resulting anisotropic

or patchy particles have become the center of very active

research, one focus being the development of large-scale fabri-

cation techniques that are required for the exploitation of the

novel materials in a range of applications.7

The current materials revolution based on patchy colloidal

particles results from recent breakthroughs in particle synthesis

and from the fact that these anisotropic colloids may be viewed

as the molecules of future materials that can be designed to (self)

assemble into functional structures. Indeed, the analogy between

patchy colloids and molecules provides a powerful theoretical
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framework that exploits the anisotropy of the interactions to

control the self-assembly of macroscopic structures.8

Modelling and computational efforts describing patchy

particle interactions and their macroscopic properties have fol-

lowed the technological lead and produced a number of inter-

esting results.9 The primitive model of patchy colloids consists of

hard-spheres with f patches on their surfaces. Patchy particles

attract each other if, and only if, two of their patches overlap.

The attraction between particles is short ranged and anisotropic:

the patches act as bonding sites and promote the appearance of

well defined clusters, whose structure and size distribution

depend on the properties of the patches (f and the energy of

attraction) and on the thermodynamic conditions (density and

temperature).

In the last 5 years, Sciortino and co-workers investigated,

using Monte Carlo simulations, the phase behaviour and the

connectivity of the fluid phases of the primitive model of patchy

colloidal particles, finding a large number of interesting proper-

ties. Among others, they established that f, the number of

patches or bonding sites per particle, is the key parameter

controlling the location of the liquid–vapour critical point.10,11

They showed that, for low values of f (approaching 2), the phase

separation region is drastically reduced and low densities and

temperatures can be reached without encountering the phase

boundary. These low density (‘‘empty’’) phases were shown to be

network (percolated) liquids (see Fig. 1), suggesting that, on

cooling, patchy particles with low functionality assemble into

glassy states of arbitrary low density (gels). It was also shown
Soft Matter, 2011, 7, 5615–5626 | 5615
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Fig. 1 Pictorial representation of a network fluid in a binary mixture of

particles with two and three identical patches. A bond between two

bonding sites lowers the energy by 3AA.
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that, at the critical point, it is always two network fluids that

become identical. Very recently, Ruzicka and co-workers have

reported the first experimental evidence of empty liquids in dilute

suspensions of Laponite.12 Their properties were found to be

similar to those predicted by the primitive patchy colloidal

models.

Remarkably, the results of the simulations of patchy colloidal

particles are very well described by classical liquid state theories:

Wertheim’s first order perturbation theory13 correctly predicts

the equilibrium thermodynamic properties; Flory–Stockmayer14

theories of polymerization quantitatively describe the size

distributions of the clusters of patchy particles, including the

appearance of network (percolated) fluids.

Here we extend the investigation of the thermodynamic

properties and connectivity of patchy colloidal fluids to binary

mixtures of patchy colloidal particles. As for pure fluids, we will

use Wertheim’s thermodynamic perturbation theory (in its

extension to mixtures)15 and Flory–Stockmayer’s theory of

percolation (generalized to mixtures – see section II B).

In order to quantify the effect of decreasing functionality

(approaching 2) on the critical point of pure fluids, Sciortino and

co-workers considered binary mixtures of particles with 2 and 3

patches.10 However, they (deliberately) ignored the entropy of

mixing in the theoretical calculations. Instead, they used Wer-

theim’s theory for pure fluids with a non-integer functionality set

to the (average) functionality of the mixture, assumed to be fixed

by the functionality of the mixture at the critical point.10,11

A few other studies reported results for the phase diagram of

polymer solutions, based on computer simulations and Wer-

theim-like theories.16,17 Full critical lines connecting the critical

point of the pure polymer to the critical point of the pure solvent

were reported, and good agreement between the simulation and

theoretical results for the coexisting liquid densities and

compositions was found at low pressures.16 These models,

however, are not directly related to the binary mixtures of patchy

particles referred to above, as they consider monodisperse (fixed

length) polymer chains in monomeric isotropic solvents.

In what follows, we address, explicitly, the interplay between

the entropy of mixing and the entropy of bonding in the network

fluid regime of models of binary mixtures of patchy particles. We

restrict our study to mixtures of patchy particles that differ by the

number of bonding sites or patches on each species.
5616 | Soft Matter, 2011, 7, 5615–5626
We have found that the phenomenology in the network fluid

regime is rich and somewhat surprising, as the interplay between

the entropy of mixing and the entropy of bonding plays a domi-

nant role, which is absent in other mixtures and/or regimes. In

the network fluid regime, the difference between the number of

bonding sites is the key parameter controlling the phase equi-

libria. If one species has at least twice the number of bonding sites

of the other, then demixing of two network fluids gives rise to

profound changes in the phase diagram of the system. The

miscibility at high pressures is also controlled by this difference

and closed miscibility gaps are present if the difference between

the number of bonding sites is greater than one.

The remainder of the paper is organised as follows. In section

II we present the model, recall Wertheim’s theory for binary

mixtures (II A) and generalize Flory–Stockmayer theory of

percolation to binary mixtures of patchy particles (II B); in II C,

we derive expressions for the binary mixtures considered in this

paper. In section III we present the results: phase diagrams

(including percolation lines) with emphasis on the network fluid

regime and critical properties of several representative mixtures.

Finally, in section IV we summarize our conclusions and suggest

lines for future research.

II. Model and theory

We consider a binary mixture of N1 and N2 equisized hard

spheres (HSs) with diameter s. The surface of each species is

patterned with a distinct number and/or type of bonding sites,

distributed in such a manner that two particles can form only one

single bond, involving two distinct sites, one on each particle.

A minimum distance between the sites is required to ensure that

no sites are shaded by nearby bonds. A pictorial representation

of the model under consideration can be found in Fig. 1.

A Helmholtz free energy: Wertheim’s thermodynamic

perturbation theory

A detailed description of Wertheim’s thermodynamic perturba-

tion theory for pure fluids and fluid mixtures can be found

elsewhere.13,15 Here we briefly quote the results and set the

notation. Within perturbation theory, the Helmholtz free energy

of a system of particles can be expressed as a sum of contribu-

tions from an unperturbed reference system where the particles

interact via repulsive forces, here the hard-core repulsions, and

a perturbation due to the attractive bonding interactions:

fH ¼ F/N ¼ fHS + fb, (1)

whereN¼N1 +N2 is the total number of particles. fHS and fb are

the HS- and bonding-free energy per particle, respectively.

fHS may be written as the sum of ideal-gas and excess terms:

fHS ¼ fid + fex. The ideal-gas free energy is given (exactly) by

bfid ¼ lnh� 1þ
X
i¼1;2

xðiÞ lnðxðiÞViÞ; (2)

with b ¼ kT the inverse thermal energy, Vi the thermal volume

and x(i) ¼ Ni/N the molar fraction of species i. h ¼ h1 + h2 is the

total packing fraction (h ¼ vsr, with r the total number density

and vs ¼ p/6s3 the volume of a single particle). The excess part,

which accounts for the excluded volume of the monomers, is
This journal is ª The Royal Society of Chemistry 2011
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approximated by the Mansoori–Carnahan–Starling–Leland

equation of state for HSs mixtures.18 The latter reduces to the

well-known Carnahan–Starling equation of state19 when the

species have the same diameter:

bfex ¼ 4h� 3h2

ð1� hÞ2 : (3)

The bonding free energy is approximated by Wertheim’s ther-

modynamic first-order perturbation theory.13 Let G(i) be the set

of bonding sites or patches on one particle of species i¼ 1, 2. The

bonding free energy per particle is given by15

bfb ¼
X
i¼1;2

xðiÞ
" X

a˛GðiÞ

�
lnX ðiÞ

a � X ðiÞ
a

2

�
þ 1

2
nðGðiÞÞ

#
; (4)

where X(i)
a is the probability that a site of type a on a particle of

species i is not bonded and n(G(i)) is the total number of bonding

sites per particle of species i. The probabilities {X(i)
a } are related to

the total density, molar fractions and temperature through the

law of mass action:

X ðiÞ
a ¼

"
1þ h

X
j¼1;2

xðjÞ X
g˛GðjÞ

Xg
ðjÞDðijÞ

ag

#�1

: (5)

D(ij)
ag characterises the bond between a site a on a particle of

species i and a site g on a particle of species j. For simplicity, we

model the interaction between sites by square wells with depths

3ag that depend on the type of bonding sites (a and g) but not on

the particle species (i and j). As a consequence, when the species

have the same diameter, the D(ij)
ag are independent of the particle

species, and can be written as

DðijÞ
ag ¼ Dag ¼ 1

vs

ð
vag

gHSðrÞ½expðb3agÞ � 1�dr: (6)

gHS(r) is the radial distribution function of the reference HS fluid

and the integral is calculated over the bond volume vag. We

consider that all bonds have the same volume (i.e., vag ¼ vb) and

we use the contact value for the radial distribution function. As

in previous works,20 we set vb ¼ 0.000332285s3. Using these

approximations eqn (6) simplifies to

Dag ¼ vb

vs
½expðb3agÞ � 1�A0ðhÞ; (7)

where

A0ðhÞ ¼ 1� h=2

ð1� hÞ3 (8)

is the contact value of gHS. These approximations will affect the

results quantitatively, but are not expected to change them

qualitatively.20,21 Substituting Dag given by eqn (7) into eqn (5)

we find that X(i)
a depends only on a, the type of site (i.e., X(i)

a ¼ Xa,

c i) in line with the independent site approximation underlying

Wertheim’s theory.

The equilibrium properties of the mixture are obtained by

minimising (at a fixed composition x, pressure p and temperature

T) the Gibbs free energy per particle g ¼ p/r + fH with respect to

the total density r subject to the constraints imposed by the law

of mass action. A standard Newton–Raphson method is used to

minimise g, and the law of mass action is solved simultaneously
This journal is ª The Royal Society of Chemistry 2011
by a Powell hybrid method or analytically when possible. In what

follows, we will denote the composition of the mixture x by the

molar fraction of species 1: x h x(1) and x(2) ¼ 1 � x.

Binodal lines are located by a standard common-tangent

construction on g(x), which is equivalent to solving the equations

for the equality of the chemical potentials of both species in the

coexisting phases (mechanical and thermal equilibria are satisfied

by fixing the pressure and the temperature).

Critical points are computed by determining the states which

satisfy the law of mass action and the spinodal condition, fvvfxx�
(fxv)

2 ¼ 0. In addition, stability requires the vanishing of the

third-order derivative in the direction of largest growth:22

fvvv � 3fxxv

�
fxv

fvv

�
þ 3fxvv

�
fxv

fvv

�2

�fvvv

�
fxv

fvv

�3

¼ 0; (9)

where subscripts denote partial derivatives, i.e., fxv is the second

partial derivative of fH with respect to the reduced volume per

particle v h 1/h and the composition x at constant temperature.

The results are presented mostly through temperature–

composition diagrams at constant pressure and pressure–

temperature projections. The pressure, actually the osmotic

pressure in colloidal systems, is difficult to measure in experi-

ments. However, temperature–composition diagrams at constant

pressure give a general overview that is somewhat easier to

interpret. In addition, we present critical temperature–packing

fraction diagrams. From these, one obtains estimates of the

packing fractions and temperature at two-phase coexistence that

may be used to inform experimental studies. We note that the

values of the thermodynamic variables at coexistence are sensi-

tive to the model parameters (e.g., size and geometry of the

molecules, volume of the bonds, interaction bond strength.)

and thus serious attempts to predict the behaviour of real systems

should be based on more accurate model building.
B Percolation in mixtures of particles with distinct numbers or

types of bonding sites

Recently,23 we generalised the Flory–Stockmayer random-bond

percolation theory14 for a model of patchy particles with an

arbitrary number of distinct bonding sites (correlated bonding

probabilities). The theory, which neglects closed loops, was

tested against Monte Carlo simulations and it was found to be

quantitatively accurate for systems of particles with three patches

of two distinct types.24 Here, we extend the theory and derive the

percolation threshold for mixtures of patchy particles under the

same no-loop assumption.

Consider a tree-like cluster and let n(k)i + 1,g denote the number of

bonded sites g on particles of species k at the level i + 1. This

number is related to the number of all types of bonded sites on

both species of particles in the previous level {n(j)i,a} through the

recursion relation (see Fig. 2 and ref. 23 for details)

n
ðkÞ
iþ1;g ¼

X
j

X
a˛Gd ð jÞ

X
b˛Gd ð jÞ

pbj/gk

�
f
ð jÞ
b � dba

�
n
ðjÞ
i;a: (10)

The sum on j runs over the particle species, j ¼ 1, 2 for binary

mixtures. Gd(j) is the set of different bonding sites on species j. fb
(j)

is the number of b bonding sites on a particle of species j and

pbj/gk is the probability of bonding a site b on a particle of
Soft Matter, 2011, 7, 5615–5626 | 5617
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Fig. 2 Schematic representation of two bonded particles (right) in a tree-

like cluster (left). A particle of species j at level i is bonded to a particle at

the previous level i � 1 through a site a and to a particle at the next level

i + 1 through a site b. The latter is bonded to a site g on a particle of

species k.

Pu
bl

is
he

d 
on

 2
3 

M
ay

 2
01

1.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
 B

A
Y

R
E

U
T

H
 o

n 
19

/0
3/

20
14

 1
0:

23
:2

3.
 

View Article Online
species j to a site g on a particle of species k. Then, the probability

of finding a bonded site b on a particle of species j is

Pbj ¼
X
k

X
g˛GdðkÞ

pbj/gk ; (11)

which may be related to the thermodynamic variables through

the law of mass action, since

Pbj
¼ 1 � X(j)

b . (12)

The eqn (10) is linear in {n(j)i,a} and can be expressed in matrix

form

~ni ¼ ~Ti~n0, (13)

where ~ni is a vector with components n(k)i,g and ~T is a square matrix

with entries:

Tgkaj
¼
X

b˛Gdð jÞ
pbj/gk

ð f ðjÞb � dbaÞ: (14)

The matrix ~T , with dimension equal the number of particle

species multiplied by the number of distinct bonding sites, may

be diagonalized or transformed into Jordan form. In either case,

the progressions defined by eqn (13) converge to 0 if the largest

(absolute value) of the eigenvalues lgk of ~T is less than unity, i.e.,

|lgk| < 1, c gk. Then, percolation occurs when |lgk| ¼ 1 for any

value of gk.

C Mixtures of particles with distinct numbers of identical

bonding sites

In the following we focus on the behaviour of mixtures of

particles with distinct numbers of identical bonding sites, say A.

There is then a single bonding energy 3AA, which sets the energy

scale. We will denote by f(1)A – f(2)A a binary mixture of particles of

species 1 characterised by f(1)A (A) sites and particles of species 2,

characterised by f(2)A (A) sites.

For these mixtures the bonding free energy given by eqn (4)

simplifies to

bfb ¼ fh i
�
lnXA � XA

2
þ 1

2

�
; (15)
5618 | Soft Matter, 2011, 7, 5615–5626
where

hfi ¼ xfA
(1) + (1 � x)f(2)A , (16)

is the average functionality or average number of bonding sites

per particle at a given composition x. The bonding free energy

can be split into two terms: the bonding energy Ub and an

entropic term related to the number of ways of bonding two

particles. As the sites are independent, Ub is simply,

b
Ub

N
¼ �1� XA

2
fh ib3AA; (17)

while the entropic term is obtained by subtracting the total

bonding free energy, given by Wertheim’s theory, from Ub.

The law of mass action given by eqn (5) reduces to a single

equation for the fraction of unbonded sites,

1 � XA ¼ xfA
(1)hX2

ADAA + (1 � x)f(2)A hX2
ADAA, (18)

and can be solved analytically. The percolation matrix is a 2 � 2

square matrix with entries

~T ¼
 
pA1/A1

ð f ð1ÞA � 1Þ pA2/A1
ð f ð2ÞA � 1Þ

pA1/A2
ð f ð1ÞA � 1Þ pA2/A2

ð f ð2ÞA � 1Þ

1
A: (19)

The probabilities pAi/Aj are found by relating the probability of

finding a bonded site A,

PA ¼ pA1/A1
+ pA1/A2

¼ pA2/A1
+ pA2/A2

, (20)

to the fraction of unbonded sites PA ¼ 1 � XA. A term-by-term

analysis of eqns (18) and (20) gives

pA1/A1
¼ pA2/A1

¼ xf
ð1Þ
A hX 2

ADAA;

pA1/A2
¼ pA2/A2

¼ ð1� xÞf ð2ÞA hX 2
ADAA:

(21)

The only non-zero eigenvalue of ~T is

l ¼ pA2/A2
(f(2)A � 1) + pA1/A1

(f(1)A � 1), (22)

and thus the system is percolated if l > 1. The probability of

finding a bonded site at the percolation threshold, Pp, can be

found by setting l ¼ 1:

Pp ¼ xf
ð1Þ
A þ ð1� xÞf ð2ÞA

ð1� xÞ f ð2ÞA ð f ð2ÞA � 1Þ þ xf
ð1Þ
A ð f ð1ÞA � 1Þ

: (23)

Note that this probability depends only on the functionality of

the particles and on the composition of the mixture. Furthermore

it reduces to the Flory–Stockmayer result in the limit of pure

fluids: x(i) ¼ 1 0 Pp ¼ 1/(f(i)A � 1).

III Results

We begin by briefly discussing the properties of the pure fluids, as

they will be used in the following sections in the analysis of the

phase behaviour of the mixtures.

A Pure fluids

In Fig. 3 we summarise the properties of pure fluids of particles

with 3, 4 or 5 identical bonding sites. These fluids were previously
This journal is ª The Royal Society of Chemistry 2011
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studied using Wertheim’s theory and Monte Carlo simulations.11

At temperatures below the critical temperature the system

undergoes a first-order phase transition as pressure increases.

The transition involves two fluid phases with different densities

and fractions of unbonded sites. In what follows we denote these

phases by liquid L (higher density and smaller fraction of

unbonded sites), and vapour V (lower density and larger fraction

of unbonded sites). The LV coexistence line ends at a critical

point that moves towards lower pressure and temperature as the

number of bonding sites decreases. The packing fraction and the

fraction of unbonded sites at the critical point also decrease as

the number of bonding sites decreases. As the temperature

vanishes, the packing fraction of the coexisting liquid phase

saturates to a value that decreases as the functionality decreases.

The stability of the liquid phase increases as the number of

bonding sites per particle increases, but otherwise the phase

behaviour is qualitatively the same for all systems.

The percolation line (dashed lines in Fig. 3) intersects the

coexistence line below the critical point on the vapour side.

Therefore, the liquid phase is always a network fluid. Near the
Fig. 3 Pressure (a), packing fraction (b) and fraction of unbonded sites

(c) as a function of temperature in pure fluids of particles with 3, 4 and 5

identical bonding sites. Circles indicate critical points. The dotted hori-

zontal line in (a) marks the pressure p*1 ¼ pvs/3AA ¼ 1.047 � 10�4 referred

to in the text. Percolation lines are dashed in panels (a) and (b).

The system is percolated above the percolation lines. In panel (c) the

percolation thresholds (omitted for clarity) are horizontal lines with

values XA ¼ 1 � 1/(fA � 1), with fA being the number of patches.

This journal is ª The Royal Society of Chemistry 2011
critical point two percolated states or network fluids coexist,

confirming that percolation is a pre-requisite for criticality in

systems where the bonding interactions are attractive.25

The behaviour is completely different for a system of particles

with 1 or 2 bonding sites. In either case there is no LV phase

transition. Systems with 1 or 2 bonding sites will form dimers and

linear chains, respectively. The absence of clustering of the

dimers and of branching of the chains prevents the fluids from

condensing. A polymerization transition occurs for linear chains

in the limit of vanishing temperature, T / 0.26
B Binary mixtures of particles with distinct functionality:

2A–3A mixture

We start by considering a 2A–3A mixture (i.e., a binary mixture

where species 1 has two patches of type A and species 2 has

three). The critical properties of this system were recently

investigated by grand-canonical Monte Carlo (MC) simula-

tions.10 The results indicate that the critical packing fraction and

temperature decrease continuously towards zero as the fraction

of 2A particles in the mixture approaches one (i.e., the average

functionality decreases towards two). The authors of ref. 10

mapped the properties of the binary mixture to those of a pure

fluid of particles with a (non-integer) number of bonding sites

equal to the average functionality hfi. Although the critical

parameters were predicted correctly by this mapping, the effect

of the entropy of mixing on the phase behaviour of the mixture

was overlooked, and this, together with a full description of the

phase diagram, will be addressed in this section.

In Fig. 4 we illustrate the results for the phase diagram of the

2A–3A mixture in the T–x plane at constant pressure.

The diagrams correspond to three distinct pressures below p(3)c ,

the critical pressure of the pure 3A system. The mixture is always

stable for pressures p > p(3)c (we will return to this point later). At

lower pressures the LV phase transition of the pure 3A system

shifts from the x¼ 0 axis to finite values of the composition, as 2A
particles are added to the mixture. The two-phase LV region ends

in a lower critical point at (xc, Tc) and increases as the pressure

decreases. The percolation line intersects the binodal on the

vapour side, close to the critical point. Below the percolation line

the system is a network fluid in the sense that there is a non-zero

probability of finding a (more or less transient) infinite cluster.

Coexistence involves two network fluids in a finite range of

temperatures above the critical temperature, which decreases as

the pressure decreases.

An increase in the fraction of 2A particles reduces the proba-

bility of branching, which drives condensation. Therefore,

a decrease in the stability of the liquid phase is expected as x

increases, and, at a given pressure, the vapour is stable at

temperatures below the transition temperature of the pure 3A
system (the temperature at the intersection of the binodal with

the x ¼ 0 axis). However, inspection of the insets of Fig. 4 (T–h

plots along the binodal curves) reveals that the density of the

liquid phase decreases monotonically with T down to Tc. This

means that the reduced stability of the liquid phase in the T–x

plane is accompanied by an increase in the range of densities

where the liquid phase is stable. In order to show this, a cut of the

(T, h, x) phase diagram at constant composition is depicted in

Fig. 5. It is important to note that, in this representation, a tie line
Soft Matter, 2011, 7, 5615–5626 | 5619

http://dx.doi.org/10.1039/C0SM01493A


Fig. 4 Phase diagrams (at different pressures) in the scaled-temperature

vs. composition (x ¼ x(1)) plane of a binary mixture of particles with 2

(species 1) and 3 (species 2) identical bonding sites. (a) pvs/3AA ¼ 5.236 �
10�4. (b) p*1 ¼ pvs/3AA ¼ 1.047 � 10�4. (c) pvs/3AA ¼ 1.885 � 10�7.

The shaded area indicates the two-phase region. Circles denote critical

points. Percolation lines are dashed. The insets depict scaled-temperature

vs. packing fraction plots along the binodal curve.

Fig. 5 Cut of the (T, h, x) phase diagram at constant composition for

a binary mixture of particles with 2 (species 1) and 3 identical bonding

sites. Shaded areas indicate two-phase regions. Open circles denote crit-

ical points. Percolation lines are dashed: Black and brown for mixtures

with x ¼ 0.60 and x ¼ 0.95, respectively.
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connecting two coexisting points in the binodal is out of the

plane, except for the critical points and the pure fluid at x ¼ 0.

The two-phase region (shaded area) extends over the whole range

of composition (except x ¼ 1), and decreases as the composition

of 2A particles increases. At x¼ 0.95, for example, it is possible to

stabilise a liquid phase with h( 0.009 while the lowest density of

the liquid in a pure 3A system is hc
(3) z 0.09 (see Fig. 3 (b)).

In fact, as shown by Sciortino et al.,10 hc and Tc approach zero

asymptotically as the pressure vanishes.
5620 | Soft Matter, 2011, 7, 5615–5626
The critical line of the mixture is depicted in Fig. 6, where it is

compared to the line of critical points of a pure fluid with

a number of bonding sites equal to the average functionality of

the mixture at the critical point.10 As expected, there are differ-

ences between the critical properties of the mixture and those of

the pure fluids. The differences result from the composition

fluctuations in the mixture, neglected in the mapping to a pure

fluid.27 Nevertheless, the mapping describes correctly the most

salient feature of the 2A–3A mixture critical line: The vanishing of

the critical parameters as the composition of the 2A–3A
approaches x ¼ 1.

Indeed, the agreement between the theoretical predictions for

the critical point of pure fluids with average functionality and the

MC simulations of the critical line of 2A–3A mixtures is quite

remarkable (see Fig. 3. of ref. 10). Nevertheless, the structure of

the critical line revealed by the MC simulations signals the effect

of composition fluctuations, confirmed by the theoretical calcu-

lations of the mixture’s critical line (left panel of Fig. 6). In

addition, both the MC and the theoretical results for the critical

parameters Tc and hc of the binary mixture are above those of the

pure fluid with the same functionality, as illustrated in the middle

and right panels of Fig. 6.
C Binary mixtures of particles with distinct functionalities

In this section we consider the binary mixtures: 2A–4A, 2A–5A
and 1A–3A. The results are summarised in the next three figures.

Temperature–composition phase diagrams at constant pressure

are depicted in Fig. 7. Results are shown at different pressures

below and above p(3)c . In all cases the phase diagram at pressure

p*1 is depicted (the phase diagram of a 2A–3A binary mixture at

the same pressure is plotted in panel (b) of Fig. 3). The prop-

erties of the critical lines are analysed in Fig. 8, and pressure–

temperature projections of the phase diagrams are shown

in Fig. 9.
This journal is ª The Royal Society of Chemistry 2011
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Fig. 6 Critical properties of a pure fluid with non-integer number of

bonding sites (red dotted lines) and a binary mixture of particles with 2

and 3 identical bonding sites (black dashed lines). Grey circles mark the

points corresponding to a fluid of particles with 3 identical sites. (left)

Scaled-critical temperature T*
c ¼ kT/3AA vs. critical packing fraction.

Middle and right panels depict the scaled-critical temperature and critical

packing fraction as a function of hfi, the average number of bonding sites

per particle at the critical point (see text).

Pu
bl

is
he

d 
on

 2
3 

M
ay

 2
01

1.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
 B

A
Y

R
E

U
T

H
 o

n 
19

/0
3/

20
14

 1
0:

23
:2

3.
 

View Article Online
1 2A–4A mixture: liquid–liquid demixing driven by the entropy

of bonding. In panel (a) of Fig. 7 we plot the T–x phase diagram

of 2A–4A mixtures at different pressures below and above p(4)c (the

critical pressure of the 4A fluid). At intermediate pressures (for

example p*1) the T–x phase diagrams are qualitatively the same as

those of the 2A–3A mixture: A two-phase region bounded by

a lower critical point starts at the x ¼ 0 axis and the percolation

line intersects the binodal on the vapour side, near the critical

point. However, by contrast to the 2A–3Amixture, the LV density

gap along the binodal curve (not shown) has a non-monotonic

behaviour. It increases near the x ¼ 0 axis and then decreases

until it vanishes at the critical point. This implies that the drive

for phase separation increases when a small fraction of 2A
particles is added to the pure 4A fluid, which has not been

observed in the 3A case. This behaviour may be understood in

terms of the balance between the entropy of mixing and the

entropy of bonding. Consider a bond between particles with 2

and n sites: The resulting structure is a two-particle cluster with n

sites available for bonding. The structure that results from

a bond between two particles with n sites is a two-particle cluster

with 2(n � 1) sites available for bonding. The latter has n � 2

additional sites that are available for bonding, and thus the loss

in the entropy of bonding increases as n increases, while the gain

in the entropy of mixing remains the same. This suggests that the

tendency for phase separation increases with n, as observed in the

2A–4A mixture.

A more striking consequence of a stronger drive for phase

separation is the behaviour of the 2A–4A mixture above the

critical pressure of the pure 4A fluid. As shown in panel (b) of

Fig. 9 there is a range of pressures above p(4)c where phase sepa-

ration still occurs. The two-phase region is a closed loop bounded

above (below) by an upper (lower) critical point. An example of

the T–x phase diagram in this range of pressures is plotted in
This journal is ª The Royal Society of Chemistry 2011
panel (a) of Fig. 7 (darkest grey). The percolation line is always

above the phase separation region. As the pressure increases the

demixing region decreases, and it vanishes at a given pressure. In

panels (a) and (b) of Fig. 9 we compare the pressure-temperature

projections of the phase diagrams of 2A–3A and 2A–4A mixtures.

The critical line has a maximum at p > p(4)c for the 2A–4A mixture,

which is absent in the 2A–3A case. As a result, closed miscibility

gaps are found in a range of pressures delimited by this maximum

and p(4)c .

Based on the topology of the pT projections, both the 2A–3A
and 2A–4A mixtures are limiting cases of type I mixtures

(according to the classification of van Konynenburg and Scott 28)

where one of the species (particles with 2 bonding sites) has

vanishing critical temperature. In type I mixtures the critical line

is continuous and it connects the critical points of the pure fluids.

In 2A–3A and 2A–4A mixtures the critical line starts at the critical

point of species 2 and tends asymptotically to T ¼ 0 as the

pressure vanishes, p / 0 (species 1 undergoes a polymerization

transition as T / 0). From a topological point of view the

significant difference between the critical behaviour of 2A–3A and

2A–4A mixtures is that the critical line is monotonic in the former

while it is non-monotonic in the latter, with closed miscibility

gaps near the critical region of the 4A fluid. However, as we will

see now, there is another important difference between both

mixtures at very low pressures.

Let us focus on the temperature-composition phase diagram of

a 2A–4A mixture at very low pressure (panel (a) of Fig. 7 medium

gray). We find a large two-phase region, the shape of which

suggests the presence (or proximity) of two different phase

transitions. Near x ¼ 0, we observe a LV transition also present

in the 2A–3A mixture, but as the temperature is lowered, a new

type of demixing appears (as a bulge) in the phase diagram. In

this region two percolated or network fluids coexist (note that

this region is well inside the percolated area). We will refer to this

as liquid–liquid coexistence in order to distinguish it from the LV

coexistence. Both regions form a continuous two-phase region

but their different origin is revealed by analysing the critical

points (see Fig. 8). As the pressure decreases, the critical

temperature vanishes but the critical density tends to a finite

value, hc / 0.053. The average functionality at the critical point

approaches asymptotically hfi ¼ 2.18 (xc ¼ 0.911) rather than

hfi equals; 2 (xc ¼ 1). Therefore, although the topology of the

mixture is unaffected, the critical line changes its character in

a continuous fashion from liquid–vapour (near the critical point

of the 4 patches fluid) to liquid–liquid. The new liquid–liquid

transition preempts the liquid–vapour phase transition and there

is no liquid–liquid–vapour triple line in this mixture. Neverthe-

less, LLV triple lines are observed in other mixtures as we will

discuss later.

In Fig. 8 we have also presented the critical properties of pure

fluids with a number of bonding sites equal to the average

functionality of the mixtures at the critical points.10 It is clear that

a mapping of the properties of the mixture to those of a pure fluid

with the same functionality completely fails in this case, as no

empty liquids are found at low pressure.

Our results strongly suggest that the new liquid–liquid dem-

ixing results from a balance between the entropy of bonding and

the entropy of mixing. Let us consider a bond between two

particles with f(2)A sites. The resulting structure is a two-particle
Soft Matter, 2011, 7, 5615–5626 | 5621
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Fig. 7 Phase diagrams at different pressures for mixtures of particles with distinct numbers of identical bonding sites in the scaled-temperature kT/3AA
vs. composition x plane. Shaded areas are two-phase regions, open circles denote critical points and percolation lines are dashed. (a) 2A–4A mixture:

particles with two A-sites (species 1) and particles with four A-sites (species 2), pressures: pvs/3AA ¼ 2.513 � 10�3 (darkest grey),

p*1 ¼ pvs/3AA ¼ 1.047 � 10�4 (lightest grey) and pvs/3AA ¼ 1.885 � 10�7 (medium grey). (b) 2A–5A mixture, pressures: pvs/3AA ¼ 1.047 � 10�2 (dark grey),

p ¼ p*1 (light grey). (c) 1A–3A mixture, pressures: pvs/3AA ¼ 1.047 � 10�3 (dark grey), p ¼ p*1 (light grey). (d) 3A–4A mixture, pressures:

pvs/3AA ¼ 1.047 � 10�3 (dark grey), p ¼ p*1 (light grey). The inset in (d) is a zoom of the region close to the LV critical point at p*1.

Pu
bl

is
he

d 
on

 2
3 

M
ay

 2
01

1.
 D

ow
nl

oa
de

d 
by

 U
N

IV
E

R
SI

T
A

T
 B

A
Y

R
E

U
T

H
 o

n 
19

/0
3/

20
14

 1
0:

23
:2

3.
 

View Article Online
cluster with 2(f(2)A � 1) unbonded sites. This corresponds to an

increase of f(2)A � f(1)A unbonded sites when compared to the

structure that results from bonding particles of species 1 and 2.

When this increase is large compared to the number of bonding

sites of species 1, the entropy of bonding gained by bonding

particles of species 2 compensates the entropy of mixing lost and

drives the liquid–liquid phase separation. Considering only an

integer number of bonding sites the condition can be written as:

f(2)A $ 2f(1)A . (24)

That is, if one species has at least twice the number of bonding

sites of the other, then liquid–liquid demixing, driven by the

entropy of bonding, occurs. Nevertheless, if we allow the parti-

cles to have a non-integer number of bonding sites, then the

condition for finding liquid–liquid demixing is not exactly given

by eqn (24). For example, in mixtures where species 1 has two

sites, we have found empty liquids – and no liquid–liquid dem-

ixing – if f(2)A ( 3.99, while liquid–liquid demixing occurs when

f(2)A T3.99.29

We have checked the heuristic argument of eqn (24) by

calculating the phase diagrams of other mixtures satisfying this

condition.
5622 | Soft Matter, 2011, 7, 5615–5626
2 2A–5A mixture. Phase diagrams of the 2A–5A mixture are

depicted in panel (b) of Fig. 7 at two different pressures below

(light grey) and above (dark grey) p(5)c , the critical pressure of the

pure fluid with 5 bonding sites. As in the previous mixture, there

is a region of pressures above p(5)c where closed miscibility gaps

are present. In this high pressure region, the phase coexistence

involves two percolated fluids. As the pressure decreases, the

two-phase region grows very rapidly, occupying a large fraction

of the phase diagram (compare, for example, the phase diagram

of this mixture at pressure p*1 with other mixtures at the same

pressure).

Topologically this mixture is still a limiting case of type I. The

analysis of the percolation threshold and the critical properties

(see Fig. 8) indicates the coexistence of two network fluids in the

limit of low pressures. As the pressure decreases, the critical

temperature tends asymptotically to Tc ¼ 0, but the critical

packing fraction and critical composition tend to finite values (hc
/ 0.282 and hfi / 3.22). There is a slight difference in the

behaviour of 2A–4A and 2A–5A mixtures. In the latter, the critical

packing fraction is always higher than the critical packing frac-

tion of the pure fluid with 5 patches, h(5)
c , and increases mono-

tonically with decreasing pressure (see panel (a) of Fig. 8). In the
This journal is ª The Royal Society of Chemistry 2011
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Fig. 8 Critical properties of binary mixtures of particles with distinct

numbers of identical bonding sites. (a) Scaled-critical temperature kTc/

3AA vs. critical packing fraction hc. (b) Scaled-critical temperature as

a function of the average number of bonding sites at the critical point hfi.
The behaviour of a hypothetical pure fluid with non-integer number of

sites is also plotted as a red-dotted line. Grey circles denote critical points

of the pure fluids with 3, 4 and 5 sites.

Fig. 9 Pressure-temperature projections of the phase diagrams of

different binary mixtures. (a) 2A–3Amixture. (b) 2A–4Amixture. (c) 2A–5A
mixture. (d) 3A–4A mixture. Solid curves are the liquid–vapour transition

lines of the pure fluids. Dashed lines are the critical lines of the mixture.

Open circles denote the critical points of the pure fluids.

This journal is ª The Royal Society of Chemistry 2011
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former (2A–4A mixture), the critical packing fraction increases

from h(3)
c , reaches a maximum, then decreases slowly, and tends

to a plateau that is lower than the critical density of the pure fluid

with 3 patches.

3 1A–3A mixture. We proceed by considering the 1A–3A
mixture (T–x phase diagrams are plotted in panel (c) of Fig. 7),

which also satisfies eqn (24). The addition of 1A particles to the

3A fluid drastically reduces both the probability of branching and

the average cluster size. At x z 0.75 the predominant structures

are isolated clusters of three 1A particles that saturate the bonds

of the 3A particles. The most obvious consequence of this is

that when T / 0, the percolation line tends asymptotically to

x ¼ 0.75 rather than to x ¼ 1. Thus, it is not possible to observe

a percolated fluid if the composition of the mixture is greater

than x ¼ 0.75.

We also found closed miscibility gaps at p > p(3)c ; an example is

the T–x phase diagram at pvs/3AA ¼ 1.047 � 10�3 depicted in

panel (c) of Fig. 7 (dark grey). The line of critical points, repre-

sented in Fig. 8, behaves qualitatively as that of the 2A–5A
mixture and, surprisingly, it is possible to find coexistence

between fluid phases with an average functionality smaller than

two (note that hfi/1.98 when Tc/ 0). Topologically, this is still

a type I mixture.
D From type I to type V mixtures: 3A–f
(2)
A mixtures

Finally, we focus on 3A–f
(2)
A mixtures, in particular, 3A–4A and

3A–6A. The latter satisfies the liquid–liquid demixing condition,

eqn (24), while the former does not. By contrast to the mixtures

considered previously, both pure fluids exhibit LV transitions.

The phase diagram of the 3A–4A mixture is plotted in panel (d)

of Fig. 7. At intermediate pressures, between p(3)c and p(4)c , the

phase diagram consists of a small two-phase region bounded by

a lower critical point. The percolation line starts at x ¼ 1 at finite

temperature and intersects the binodal on the vapour side, close

to the critical point. At pressures below p(3)c (e.g., p*1) the critical

point disappears and there is LV coexistence over the whole

range of composition. The liquid phase is always percolated in

this range of pressures. Above p(4)c the system is completely

miscible. The line of critical points in a pT projection, repre-

sented in panel (c) of Fig. 9, connects the critical points of the two

pure fluids and thus it is a standard type I mixture. The

temperature and the density on the critical line are similar to

those obtained from the mapping to a pure fluid with the same

functionality (see Fig. 8). In 3A–5A mixtures, the only difference

is the existence of closed miscibility gaps at pressures higher than

p(5)c (the critical line is non-monotonic. See, for example, the pT

projection of this mixture in panel (d) of Fig. 9).

However, new phenomenology is found in the phase behav-

iour of 3A–6A mixtures. Three representative phase diagrams are

plotted in Fig. 10. At pressures slightly below p(6)c there is a large

two-phase region starting at x ¼ 0 and ending in a lower critical

point at finite values of the composition (panel (a) of Fig. 10). As

p(3)c is approached, a phase transition involving two liquid-like

states is clearly visible. There are two critical points, where

liquid–liquid and liquid–vapour coexistence end (see panel (b)).

A liquid–liquid–vapour triple point is present at temperatures

slightly above the temperature of the liquid–vapour critical
Soft Matter, 2011, 7, 5615–5626 | 5623
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Fig. 10 Phase diagrams (at different pressures) in the scaled-tempera-

ture vs. composition (x¼ x(1)) plane of a binary mixture of particles with 3

(species 1) and 6 (species 2) identical bonding sites (3A–6A mixture). (a)

pvs/3AA ¼ 5.236 � 10�3. (b) pvs/3AA ¼ 1.047 � 10�3. (c) p*1 ¼ pvs/3AA ¼
1.047 � 10�4. The shaded area is the two-phase region. Circles denote the

critical points. Percolation lines are dashed. The horizontal dotted line in

(b) indicates the position of the triple point. The inset in (b) is a zoom of

the region near the x ¼ 1 axis. In this zoom the percolation line connects

the x ¼ 1 axis to the binodal. The dashed-dotted line inside the demixing

region in (c) is the metastable binodal for LL coexistence.

Fig. 11 (a) Scaled-temperature vs. packing fraction at the critical lines of

various 3A–f
(2)
A mixtures. The critical line of a hypothetical pure fluid with

a non-integer number of bonding sites is also represented as a red-dotted

line. Grey circles denote the critical points of pure fluids with 3, 4, 5, and 6

bonding sites. Blue squares are the critical end points of the 3A–6A
mixture. (b) Pressure–temperature projection of the phase diagram of the

3A–6A mixture. Solid curves ending in an open circle are the LV lines of

the pure fluids. The other solid line (see zoom in the inset) is the LLV

three phase line. The critical lines are dashed.

Fig. 12 Scaled-temperature vs. packing fraction at the critical points of

4A–f
(2)
A mixtures. The behaviour of a hypothetical pure fluid with a non-

integer number of bonding sites is also represented as a red-dotted line.

Grey circles denote the critical points of pure fluids with an integer

number of bonding sites in the range 4 to 8. Critical end points of the

4A–8A mixture are denoted by blue squares.
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point. Below p(3)c the liquid–vapour critical point disappears but

the liquid–liquid critical point is present down to p(�) z 0.43 p(3)c .

At pressures below p(�) the liquid–liquid demixing

becomes metastable with respect to the liquid–vapour transition

(see panel (c)) and the phase diagram is similar to those of the

3A–4A or 3A–5A mixtures.
5624 | Soft Matter, 2011, 7, 5615–5626
The critical properties of mixtures where species 1 has three

bonding sites are shown in Fig. 11 (a). For 3A � 4A and 3A � 5A
mixtures the critical line is continuous and connects the critical
This journal is ª The Royal Society of Chemistry 2011
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points of both fluids. In the 3A� 6Amixture, however, the critical

line is discontinuous (see also the pT projection in panel (b) of the

same figure). A liquid–vapour critical line extends from the

critical point of the component with a lower number of bonding

sites (3A) and terminates at a three phase line at an upper critical

end point. Another liquid–vapour critical line starts at the critical

point of the other component (6A), changes its character

continuously to a liquid–liquid critical line and ends on the same

three phase line at a lower critical end point (type V binary

mixture).

The same topological change occurs in mixtures where species

1 has 4 bonding sites (see Fig. 12) when species 2 has 8 bonding

sites.

We have not studied mixtures with f(1)A > 4, as the predictions of

Wertheim’s theory become less accurate as the number of

bonding sites increases,30 and also because the density is not

sufficiently low to rule out the presence of stable solid phases that

will appear at high pressure and/or low temperature. However,

the stability of the solid is very sensitive to the location of the

bonding sites: a symmetric distribution (e.g., tetrahedral

symmetry in particles with 4 bonding sites) will promote the

formation of crystalline phases, whereas the opposite occurs if

the bonding sites are randomly distributed. InWertheim’s theory

the bonding sites are independent, and thus it will describe more

accurately particles with bonding sites that are distributed

randomly.
IV Discussion and concluding remarks

We have analysed the phase behaviour, percolation threshold

and critical properties of binary mixtures of patchy colloidal

particles, usingWertheim’s theory and an extension of the Flory–

Stockmayer theory of percolation for binary mixtures. We have

restricted the study to mixtures where all bonding sites are

identical (there is a single bonding probability) and the particles

have the same diameter (no drive for phase separation from the

excluded volume of the monomers). Despite the simplicity of the

model, we have found a rich phase behaviour including closed

miscibility gaps, liquid–liquid phase separation and topological

changes in the phase diagram, as the number of bonding sites of

the particles is varied.

We have found that the entropy of bonding plays a crucial role

in the stability of fluid phases and drives novel liquid–liquid

phase transitions, not present in mixtures of simple fluids.

Consistent with this observation the closed miscibility gaps and

the liquid–liquid demixing occur deep in the percolated region of

the phase diagram. It is then two network or structured fluids

that coexist at these new phase transitions.

The difference in the number of bonding sites of both species

was found to be the key parameter that controls the topology of

the phase diagram and the nature and number of the fluid phase

transitions of the mixture. In particular, we found that:

1. The phase diagram is type I (the critical line of the mixture

connects the critical points of the pure fluids) if the species with

a higher number of bonding sites has less than twice the number

of bonding sites of the other species. If this condition is not

satisfied, then the entropy of bonding drives a new liquid–liquid

phase separation and the mapping to a pure fluid with average

functionality fails. Furthermore, if both species have finite LV
This journal is ª The Royal Society of Chemistry 2011
critical points the phase diagram changes from type I to type V

(a LV critical line extends from the critical point of the fluid with

the smaller number of bonding sites and terminates at a three

phase line at an upper critical end point. Another LV critical line

starts at the critical point of the other species, changes its char-

acter continuously to a liquid–liquid critical line and ends on the

same three phase line at a lower critical end point).

2. The critical line is monotonic if the difference between the

number of bonding sites of the two species is one:

|f(1)A � f(2)A | ¼ 1. (25)

This is the case for 2A–3A, 3A–4A and 4A–5A mixtures, and the

corresponding fluids are completely miscible at all pressures. The

mapping to a pure fluid with average functionality is (qualita-

tively) correct. By contrast, the critical line is non-monotonic if

the difference between the number of bonding sites of the two

species is greater than one:

|f(1)A � f(2)A | > 1. (26)

Examples are 1A–3A, 2A–4A, 3A–0–5A or 4A–6A mixtures. In

this case closed miscibility gaps appear at high pressures and the

mapping to a pure fluid with average functionality fails.

Changes in the topology of the phase diagram of binary

mixtures have been reported experimentally and theoretically for

a variety of systems. For example, the CO2 + n-alkane homol-

ogous series exhibits transitions from type I to type II, IV and III

as the chain length of the hydrocarbon increases.31 These changes

are generally correlated to the ratio of critical temperatures and

pressures of the pure fluids. In the binary mixtures discussed here

these ratios also vary when the number of bonding sites varies.

We believe, however, that the driving force for the change in this

class of mixtures is the difference in the bonding entropy asso-

ciated with bonds between like- and unlike-particles. It is possible

to address this question by considering mixtures of particles with

different diameters (or different types of bonding sites) to

constrain both fluids to have similar critical pressures and

temperatures.

Related studies on the global phase diagrams of binary

mixtures using Wertheim-based equations of state can be found

in the literature. See, for example, ref. 32, where binary mixtures

of water and n-alkanols are modelled by the statistical associ-

ating fluid theory (for a recent review see, for example, ref. 33). In

these models, however, the attractive interactions are not limited

to the interaction between bonding sites as considered in the

present study. This limit is unlikely to be relevant for molecular

fluids but appears to be relevant to the newly synthesized patchy

particles, and gives rise to new and interesting phenomenology.

We have already studied the empty fluid regime of binary

mixtures of particles with 2 and 3 patches of different types 34

with the goal of designing structured fluids, with novel macro-

scopic properties, including stable bigel phases.35

As a final remark, we note that a state-dependent functionality
�f may be defined by mapping the moments of the cluster distri-

butions functions of the mixture, to those of pure fluids, similarly

to what is done in ref. 24. A pure fluid characterised by a state

dependent functionality may be useful to describe aspects of the

mixture phase behaviour, such as closed miscibility gaps or
Soft Matter, 2011, 7, 5615–5626 | 5625
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liquid–liquid phase separation, that are not described by the

mapping to a fluid with average functionality.
Note added after first publication.

This article replaces the version published on 19th May 2011,

which contained errors in the axis titles of Fig. 3 and Fig. 7.
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