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We investigate the effect of distinct bonding energies on the onset of criticality of low functionality
fluid mixtures. We focus on mixtures of particles with two and three patches as this includes the
mixture where “empty” fluids were originally reported. In addition to the number of patches, the
species differ in the type of patches or bonding sites. For simplicity, we consider that the patches on
each species are identical: one species has three patches of type A and the other has two patches of
type B. We have found a rich phase behavior with closed miscibility gaps, liquid–liquid demixing,
and negative azeotropes. Liquid–liquid demixing was found to pre-empt the “empty” fluid regime,
of these mixtures, when the AB bonds are weaker than the AA or B B bonds. By contrast, mixtures
in this class exhibit “empty” fluid behavior when the AB bonds are stronger than at least one of
the other two. Mixtures with bonding energies εB B = εAB and εAA < εB B , were found to exhibit an
unusual negative azeotrope. © 2011 American Institute of Physics. [doi:10.1063/1.3561396]

I. INTRODUCTION

In the last twenty years the study of colloidal phase
diagrams, based on spherically symmetric particle inter-
actions, revealed a rich phenomenology including new
crystal phases, gelation, and glass transitions.1, 2 The phase
behavior of binary mixtures is richer and colloidal binary
mixtures are expected to have a wider range of applications
in technology as well as in biology. Examples include novel
candidate photonic crystals, synthesized by van Blaaderen
and co-workers, through fine control of the colloidal charges3

(see also the simulations of Ref. 4), and binary mixtures of
eye-lens proteins, studied by Schurtenberger et al., where
attractive unlike (spherical) interactions were found to be
crucial to stabilize the mixture, a mechanism relevant in
the prevention of cataract formation.5

Nowadays colloidal particles can be synthesized in a
range of shapes and their surfaces may be functionalized in
a variety of ways,6–10 with the result that the particle interac-
tions become directional or “patchy.” The primitive model of
patchy colloids consists of hard-spheres (HSs) with f patches
on their surfaces. Patchy particles attract each other if and
only if two of their patches overlap. The attraction between
particles is short ranged and anisotropic: the patches act as
bonding sites and promote the appearance of well defined
clusters, whose structure and size distribution depend on the
properties of the patches ( f and the bonding energy) and on
the thermodynamic conditions (density and temperature).
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Sciortino and co-workers established that f , the number
of patches or bonding sites per particle, is the key parame-
ter controlling the location of the liquid–vapor (LV) critical
point.11, 12 They showed that, for low values of f (approach-
ing 2), the phase separation region is drastically reduced, and
low densities and temperatures can be reached without en-
countering the phase boundary. These low density (“empty”)
phases were shown to be network liquids, suggesting that, on
cooling, patchy particles could assemble into a glassy state
of arbitrary low density (a gel). Very recently, Ruzicka and
co-workers have reported the first experimental evidence of
empty liquids in dilute suspensions of Laponite.13 Their prop-
erties were found to be similar to those predicted by the prim-
itive patchy colloidal models.

Remarkably, the results of the simulations of patchy col-
loidal particles are well described by classical liquid state the-
ories: Wertheim’s first order perturbation theory 14–17 predicts
correctly the equilibrium thermodynamic properties; Flory
–Stockmayer18–20 theories of polymerization describe quan-
titatively the size distributions of the clusters of patchy parti-
cles, including the appearance of network (percolated) fluids.

In subsequent work we addressed, explicitly, the inter-
play of the entropy of mixing and the entropy of bonding in
the phase behavior of models of binary mixtures of patchy
particles. We focused on mixtures of particles which differ in
the number of patches or functionality only. We found that,
within this class of mixtures, the difference between the func-
tionality of the particles is the key parameter controlling the
phase equilibria of the system. In particular, if one species
has more than twice the number of bonding sites of the other,
a phase transition between two network fluids appears and the
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topology of the phase diagram may change. The miscibility at
high pressures is also controlled by this difference and closed
miscibility gaps are always present when the difference, be-
tween the functionality of the particles, is greater than one.21

The conditions required to realize empty phases were shown
to differ from those proposed by Sciortino and co-workers,
and no “empty” liquids were found when the functionality of
one of the species exceeds 4.21

The primitive model of patchy particles was generalized
to include different types of patches (i.e., more than one bond-
ing energy). This was achieved22–24 by considering a single
component fluid where the particles have two A sites (with
bonding energy εAA), and one B site (with bonding energy
εB B). Unlike sites also interact with bonding energy εAB . This
model allows a deeper understanding of the onset of criti-
cality in low functionality systems: the detailed fashion in
which the critical temperature vanishes, as the bonding en-
ergies decrease toward zero, depends on the order in which
the limits are taken, which, in turn, determines the type of the
network that is formed. Empty phases are low-density struc-
tured (percolated) fluids and the emergence of criticality is re-
lated to this structure. Thus, the generalized model provides a
reference system for the microscopic description of the com-
petition between condensation and self-assembly of equilib-
rium structured fluids as the theoretical predictions based on
Wertheim’s theory have been confirmed, recently, by Monte
Carlo simulations.25, 26

In the present work, we proceed to investigate the effect
of distinct bonding energies on the onset of criticality of low
functionality fluid mixtures. We focus on mixtures of particles
with two and three patches as this is the type of mixture where
empty fluids were originally reported. In addition to the num-
ber of patches the species may differ in the type of patches or
bonding sites. For simplicity, we assume that the patches on
each species are identical, i.e., we consider mixtures of par-
ticles with two B patches and particles with three A patches:
2B − 3A mixtures.

As for pure fluids, we will use Wertheim’s thermody-
namic perturbation theory (in its extension to mixtures)27

and Flory–Stockmayer’s theory of percolation (generalized
to mixtures21). The colloids are modeled by equisized hard
spheres and we vary the strength of the bonding energies εAA,
εB B , and εAB (Fig. 1). We recover the 2A − 3A mixture inves-
tigated previously11, 21 when all bonding energies are equal.
This is a type I mixture that is completely miscible above the
critical pressure of the less volatile component. The empty

FIG. 1. Schematic representation of the mixture under consideration illus-
trating the different bonding energies.

fluid regime is approached monotonically: the critical pack-
ing fraction and the temperature decrease toward zero as the
fraction of 2A particles approaches one (i.e., the average func-
tionality decreases toward two).

We found a rich phase behavior with closed miscibility
gaps, liquid–liquid (LL) demixing, negative azeotropes, and,
from a topological point of view, three different types of mix-
tures: type I, I-A, and III.28 Liquid–liquid demixing is the
mechanism which prevents this class of mixtures from ex-
hibiting empty fluid behavior and this occurs when the AB
bonds are weaker than the AA or B B bonds. By contrast, the
mixtures exhibit empty fluid behavior when the AB bonds
are stronger than at least one of the other two. Furthermore,
mixtures with bonding energies εB B = εAB and εAA < εB B ,
exhibit an unusual (negative) azeotropic behavior.

We found an exception where the AB bonds are stronger
but the mixture fails to exhibit empty fluid behavior: the mix-
ture with εAB = εAA and εB B = 0. Near the critical point of
this mixture there is demixing and two network fluids with a
finite packing fraction coexist, as the pressure vanishes. This
behavior resembles that found previously21 for 2A − 5A mix-
tures where the entropy of bonding drives a demixing tran-
sition, which pre-empts the empty fluid liquid–vapor phase
transition.

The remainder of the paper is organized as follows. In
Sec. II, we present the model, summarize Wertheim’s theory
for binary mixtures (Sec. II A), and the Flory–Stockmayer
theory of percolation for binary mixtures of patchy particles
(Sec. II B). In Sec. III, we present the results: phase diagrams
(including percolation lines) and critical properties of several
representative mixtures. Finally, in Sec. IV, we summarize
our conclusions and suggest lines for future research.

II. MODEL AND THEORY

We consider a binary mixture of N1 and N2 equisized
HSs with diameter σ . Particles of species 1 are decorated with
two patches of type B, and particles of species 2 with three
patches of type A: a 2B − 3A binary mixture. The bonding
sites are distributed on the particle surfaces in such a manner
that two particles can form only one single bond, involving
two bonding sites only, one in each particle. In addition, there
is a minimum distance between the bonding sites to ensure
that no sites are shaded by nearby bonds.

A. Helmholtz free energy: Wertheim’s thermodynamic
perturbation theory

A description of Wertheim’s perturbation theory for pure
fluids and mixtures can be found elsewhere.14–17, 27 Here we
summarize the theory for the mixture under consideration
(the theory for binary mixtures with an arbitrary number of
patches of different types is discussed in Ref. 21).

The Helmholtz free energy per particle, fH , is the sum
of contributions from a reference system, a mixture of hard
spheres ( fHS), and a perturbation due to the bonding interac-
tions ( fb):

fH = FH/N = fHS + fb, (1)
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where N = N1 + N2 is the total number of particles. The HSs
free energy may be written as the sum of ideal-gas and excess
contributions: fHS = fid + fex. The ideal-gas free energy is
given by

β fid = ln η − 1 +
∑

i=1,2

x (i) ln(x (i)Vi ) (2)

with β = 1/kT being the inverse thermal energy, Vi being
the thermal volume, and x (i) = Ni/N being the number frac-
tion of each species. η = vsρ is the total packing fraction, vs

= π/6σ 3 is the volume of a single particle, and ρ is the to-
tal number density. The excess part, which includes the ef-
fect of the excluded volume, is approximated by the Carnahan
–Starling equation of state29 (note that both species have the
same diameter):

β fex = 4η − 3η2

(1 − η)2
. (3)

The bonding free energy has two contributions: the bond-
ing energy and an entropic term related to the number of ways
of bonding two particles. In the framework of Wertheim’s
thermodynamic first-order perturbation theory it is given
by21, 27

β fb = x [2 ln X B − X B + 1] + (1 − x)

×
[

3 ln X A − 3
2

X A + 3
2

]
, (4)

where x ≡ x (1) is the composition of the mixture (x (2) = 1
− x) and Xα is the probability that a site of type α = A, B
is not bonded. The latter are related to the thermodynamic
quantities through the law of mass action:

X A = 1 − 2ηx X B X A(AB − 3η(1 − x)X2
A(AA,

X B = 1 − 2ηx X2
B(B B − 3η(1 − x)X A X B(AB . (5)

The set of parameters (αγ characterize the bonds between
sites α and γ . For simplicity, the interaction between bonding
sites is modeled by square well potentials with depths εαγ .
Assuming that all bonds have the same volume, vb, and using
the ideal-gas approximation for the pair correlation function
of the reference HS fluid, we find21

(αγ = vb

vs
[exp(βεαγ ) − 1]. (6)

As in previous works,22, 23 we set the bond volume to vb

= 0.000332285σ 3. We consider mixtures where two of the
three bonding energies, εAA, εAB , and εB B , are equal and vary
the third. The two identical energies set the energy scale, ε. In
what follows we use scaled-bonding energies ε∗

αγ = εαγ /ε.
We use the Gibbs free energy per particle (g = p/ρ

+ fH , where p is the pressure) to obtain the equilibrium prop-
erties of the mixture. At fixed values of the composition x ,
pressure p, and temperature T , g is minimized with respect
to the total density ρ, subject to the constraints imposed by
the law of mass action. We use a standard Newton–Raphson
method to minimize g, and solve the law of mass action si-
multaneously by a Powell hybrid method.

A standard common tangent construction on g(x) is used
to determine the coexistence points (which is equivalent to

imposing the equality of the chemical potentials in the coex-
isting phases), while mechanical and thermal equilibria are
satisfied by fixing the pressure and the temperature, respec-
tively.

Finally, the critical points are computed numerically by
determining the states which satisfy the spinodal condition
and the vanishing of the third-order derivative in the direction
of largest growth.30

B. Theory of percolation

Recently,21 we generalized an extension of the Flory
–Stockmayer random-bond percolation theory18–20 proposed
by Tavares et al.25 to binary mixtures with an arbitrary num-
ber of distinct bonding sites. Consider a treelike cluster (i.e.,
with no loops) as schematically illustrated in Fig. 2. The num-
ber of bonded sites α at the level i + 1 is related to the number
of all types of bonded sites in the previous level through the
recursion relations (see Refs. 21 and 25 for details):

ni+1,A = 2pA→Ani,A + pB→Ani,B,

ni+1,B = 2pA→Bni,A + pB→Bni,B, (7)

where pα→γ is the probability of bonding a site α to a site γ .
Then, the probability of finding a bonded site α is

PA = pA→A + pA→B,

PB = pB→A + pB→B, (8)

which may be related to the thermodynamic quantities
through the law of mass action, since

Pα = 1 − Xα, α = A, B. (9)

A term-by-term analysis of Eqs. (5) and (8) gives

pA→A = (1 − x)3ηX2
A(AA,

pA→B = x2ηX A X B(AB,

pB→B = x2ηX2
B(B B,

pB→A = (1 − x)3ηX A X B(AB . (10)

In order to find whether the system is percolated or not,
we write Eq. (7) in matrix form:

ñi = T̃ i ñ0, (11)

FIG. 2. Schematic representation of a treelike cluster in a 2B − 3A binary
mixture. pα→γ is the probability of bonding a site α to a site γ .

Downloaded 03 Feb 2012 to 132.180.92.163. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



104904-4 Heras, Tavares, and Gama J. Chem. Phys. 134, 104904 (2011)

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08
0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0

0.02

0.04

0.06

0.08

0

0.02

0.04

0.06

0.08

0

0.02

0.04

0.06

0.08

0

0.02

0.04

0.06

0.08kT
 / 

ε

0 0.2 0.4 0.6 0.8 1
x

0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1
x

0

0.02

0.04

0.06

0.08

(a1)

(b1)

(c1)

(d1)

(a2)

(b2)

(c2)

(d2)

L

L

L

L

L
L

L
L L

V

V

VV

V V

εBB=1.1

εBB=1

εBB= 0.5

εBB= 0

3A 2B

FIG. 3. Phase diagrams of mixtures of particles with two patches of type B
(species 1) and three patches of type A (species 2) in the scaled-temperature
vs composition (x = x (1)) plane at constant pressure. The bonding inter-
actions are: ε∗

AA = ε∗
AB = 1 and: row 1 (a1) and (a2) ε∗

B B = 1.1, (b1) and
(b2) ε∗

B B = 1, (c1) and (c2) ε∗
B B = 0.5, (d1) and (d2) ε∗

B B = 0. Left column:
Pressure p∗

1 = p1vs/ε = 1.05 × 10−4, Right column: Pressure p∗
2 = p2vs/ε

= 1.05 × 10−5.

where ñi is a vector with components ni,α and T̃ is a 2 × 2
square matrix with entries

T̃ =
(

2pA→A pB→A

2pA→B pB→B

)

, (12)

which may be diagonalized. The progressions defined by
Eq. (11) converge to 0 if the largest (absolute value) of the
eigenvalues of T̃ is less than unity. In other words, percola-
tion occurs when |λ±| = 1 for any of the two eigenvalues λ±
of T̃ .

III. RESULTS

Before describing the results for 2A − 3A mixtures we
set the graphical code/s used in the figures. Phase diagrams
are presented, in the temperature-composition plane at con-
stant pressure, in Figs. 3, 6, and 9. In all the figures perco-
lation lines are plotted as solid red lines: below the perco-
lation line the fluid is percolated in the sense that there is a
nonzero probability of finding an infinite cluster. We call these
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FIG. 4. Pressure–temperature projections of the phase diagrams of binary
mixtures with ε∗

AA = ε∗
AB = 1. The solid curve is the liquid–vapor transition

of the pure 3A fluid, which ends in a critical point (open circle). Dashed and
dotted lines are the critical lines of the mixture.

networks fluids. The liquid side/s of the binodal lines is/are
always percolated; binodal lines are depicted as black solid
lines; shaded areas are two-phase regions; empty circles are
critical points; black squares are azeotropic points.

The critical properties of the mixtures are analyzed by
means of pressure–temperature projections (Figs. 4, 7, and
10) and critical temperature versus critical packing fraction
representations (Figs. 5, 8, and 11). In all cases, solid lines
depict the liquid–vapor transition and empty circles depict
the critical point of the pure fluid (3A fluid). Dashed and
dotted lines are the critical points of the mixture: when the
mixture exhibits empty fluid behavior, at low pressure, the
critical line is dashed, otherwise it is shown dotted.

A. 2A − 3A mixture

We start by reviewing the results for the mixture with
identical bonding interactions, which was investigated by
grand-canonical Monte Carlo simulations11 and using the cur-
rent theory.21 At low pressures, the pure 3A fluid undergoes
LV liquid–vapor condensation, below the critical tempera-
ture. The transition involves two fluids with different densi-
ties and fraction of unbonded sites. By contrast, there is no
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FIG. 5. Scaled-critical temperature vs critical packing fraction of mixtures
with ε∗

AA = ε∗
AB = 1. The open circle denotes the critical point of the pure

3A fluid. The inset is a zoom of the case ε∗
B B = 1.1, where ηc → 1.
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AB = ε∗
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First row: ε∗

AA = 1.1, pressures: p∗ = pvs/ε = 5.24 × 10−4 (a1), p∗ = 3.14 × 10−4 (a2), p∗ = p∗
1 = 1.05 × 10−4 (a3). Second row: ε∗

AA = 0.85, pressures:
p∗ = 5.24 × 10−5 (b1), p∗ = 3.14 × 10−5 (b2), p∗ = 1.31 × 10−5 (b3). Third row: ε∗

AA0.5, pressures: p∗ = 4.19 × 10−5 (c1), p∗ = 2.83 × 10−5 (c2),
p∗ = 2.09 × 10−5 (c3). Fourth row: ε∗

AA = 0, pressures: p∗ = 2.88 × 10−5 (d1), p∗ = 2.09 × 10−5 (d2), p∗ = p∗
2 = 1.05 × 10−5 (d3).

LV transition in the pure 2A fluid, as the particles with two
bonding sites can form linear chains only and the absence of
branching prevents the fluids from condensing. For the mix-
ture, the simulation and theoretical results indicate that the
critical packing fraction decreases continuously toward zero
as the pressure vanishes, exhibiting empty liquid behavior,
that is, there is a fluid phase with an arbitrary low packing
fraction.

The temperature-composition phase diagrams are illus-
trated in Fig. 3 panels (b1) and (b2) at two distinct pressures
below p(3)

c , the critical pressure of the pure 3A fluid (the mix-
ture is completely miscible above p(3)

c ). When 2A particles are
added the LV phase transition shifts from x = 0 (3A fluid) to
finite values of the composition. The two-phase region, which
is always bounded by a lower critical point, increases as the

pressure decreases. Near the x = 0 axis the slope of the bin-
odal is negative, indicating a decrease in the stability of the
liquid phase as the fraction of 2A particles increases. The ad-
dition of 2A particles reduces the probability of branching, the
mechanism which drives condensation, and consequently the
region of stability of the liquid phase decreases.

The pT projection of the critical line (see Fig. 4) starts
at the critical point of the less volatile fluid (3A fluid) and
decreases monotonically to p → 0 and T → 0. Topologically
this is a limiting case of type I mixtures, with no liquid–liquid
demixing, according to the classification of van Konynenburg
and Scott,28, where one of the fluids does not undergo LV
condensation (2A fluid).

In what follows, we consider generic 2B − 3A mixtures
(i.e., where species 1 is decorated with two patches of type B
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and species 2 with three patches of type A) which are charac-
terized by three bonding interactions: ε∗

AA, ε∗
B B , and ε∗

AB . We
proceed by setting, in turn, two of them equal and vary the
third.
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critical properties are illustrated in Fig. 5.
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temperature for any value of the pressure. The demixing
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separation is driven by the presence of AB bonds as they re-
duce the number of B B bonds which are energetically favor-
able. The demixing at low temperatures pre-empts the empty
fluid regime.

We chose ε∗
B B = 1.1 as a representative example of this

class of mixtures. At pressures higher than p(3)
c the T x phase

diagram (not shown) consists in a demixing region bounded
above by an upper critical point. Sightly below p(3)

c there are
two regions of phase separation bounded by critical points
[panel (a1) of Fig. 3]: LL demixing at low temperatures and
LV at high temperatures. By reducing the pressure below a
certain value (p/p(3)

c ≈ 0.27), the two regions merge giving
rise to a very large demixing region without critical points
[panel (a2) of Fig. 3].

The pure 2B fluid does not undergo LV condensation, and
thus the phase diagram of these mixtures does not fit exactly
the standard classification of van Konynenburg and Scott.28

Nevertheless, it may be understood as a limiting case of
type III mixtures (see the pT projection in Fig. 4). The crit-
ical line, which changes its character continuously from LV
to LL, starts at the critical point of the less volatile fluid,
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FIG. 10. Pressure–temperature projections of the phase diagrams of binary
mixtures with ε∗

AA = ε∗
B B = 1.

exhibits a minimum, and continues with a negative slope to
high pressures. This line is expected to intersect the solid
phase boundaries that were not considered here. The topol-
ogy of the phase diagram remains the same for other mixtures
with ε∗

B B > 1, but changes in the critical line, such as the ab-
sence of the minimum, may occur.

The critical temperature and the packing fraction are plot-
ted in Fig. 5. As the pressure increases the packing fraction in-
creases while the critical temperature and concentration tend
asymptotically to kTc/ε → 0.037 and xc → 0.757.

2. ε∗
BB = 0, ε∗

AA = ε∗
AB = 1

Let us continue by considering the extreme case where
the B patches do not interact: ε∗

B B = 0. The mixture is com-
pletely miscible at pressures above p(3)

c . Slightly below p(3)
c

the T x phase diagrams [an example is plotted in panel (d1) of
Fig. 3] are similar to those of the reference mixture (2A − 3A):
the LV phase transition shifts from x = 0 (3A fluid) to finite
values of the composition. The differences appear at lower
temperatures. As a result of the absence of bonding between
2B particles, there is no condensation when the fraction of 2B

particles in the mixture is sufficiently large. When the tem-

0 0.02 0.04 0.06
ηc

0.02

0.04

0.06

0.08

kT
c / ε εAB=1*

εAB= 0.955*

εAB=0.875*

εAB=1.1* εAB= 0*

FIG. 11. Scaled-critical temperature vs critical packing fraction of binary
mixtures with ε∗

AA = ε∗
B B = 1. In all cases with ε∗

AB < 1 the critical packing
fraction tends to ηc → 1.

perature decreases, at any value of the pressure, the percola-
tion line tends asymptotically to x → 0.75 (with X A → 0 and
X B → 0.5) rather than x → 1 (with X A → 0 and X B → 0)
as in the reference mixture. Differences in the phase diagrams
are noticeable as the pressure is further reduced [see panel
(d2) in Fig. 3]. Near x = 0, there is a LV transition similar to
the transition of the reference mixture, but as the temperature
is lowered, the two-phase region changes drastically and ends
in a lower critical point. Topologically, this is still a limiting
case of type I mixtures (pT projection is depicted in Fig. 4).
The critical temperature approaches zero when the pressure
vanishes, as in the reference mixture, but the critical packing
fraction tends asymptotically to ηc = 0.0091 (see Fig. 5) and
xc → 0.699 rather than ηc → 0 and xc → 1. Thus, there is no
empty liquid regime when the B patches do not interact. The
difference between the AA and B B bonding energies drives
demixing between two network fluids, which pre-empts the
LV phase transition at low pressures.

3. 0 < ε∗
BB < 1, ε∗

AA = ε∗
AB = 1

These mixtures retain features of the previous two
classes, those with ε∗

B B = 1 and those with ε∗
B B = 0. An ex-

ample of the temperature-composition phase diagrams at con-
stant pressure is shown in the third row of Fig. 3 for ε∗

B B
= 0.5, examples of the pT projections are depicted in Fig.
4, and the critical properties are illustrated in Fig. 5.

At intermediate temperatures, the B B interactions are
frozen (in the sense that the probability of B B bonding is
much smaller than the probability of AB or AA bonding)
and the mixture behaves as the mixture with εB B = 0. Even-
tually, at low enough temperatures, all bonds are established
and the mixture behaves as the reference 2A − 3A mixture. In
particular, the empty liquid regime (Tc → 0 and ηc → 0 as
the pressure vanishes) is observed. In all cases these mixtures
are limiting cases of type I phase equilibria where only one
component undergoes LV condensation.

C. 2B − 3A mixtures: εAB = εBB

We continue the analysis by setting ε∗
AB = ε∗

B B = 1 and
varying the bonding energy of AA bonds.

1. ε∗
AA > ε, ε∗

AB = ε∗
BB = 1

We selected ε∗
AA = 1.1 to illustrate the behavior of

this class of mixtures. Temperature-composition phase dia-
grams at different pressures are plotted in Fig. 6 (a1) pvs/ε

= 5.24 × 10−4 (well above the critical pressure of the pure
substance p(3)

c ), (a2) pvs/ε = 3.142 × 10−4 (sightly above
p(3)

c ), and (a3) p∗
1 = pvs/ε = 1.05 × 10−4 (sightly below

p(3)
c ). The behavior is similar to the mixture with ε∗

B B = 1.1
and ε∗

AB = ε∗
AA = 1, analyzed in Sec. III B 1. In addition to

the LV condensation, there is a LL demixing region at low
temperatures for any value of pressure. Well above p(3)

c the LL
demixing region is bounded by an upper critical point, Fig. 6
(a1). As p(3)

c is approached from above, the LV condensation
appears in the form of closed loops of immiscibility (a2). By
further reducing the pressure, the two-phase regions grow and
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eventually merge giving rise to a very large demixing region,
which intersects the x = 0 axis at the temperature of the LV
transition of the pure component (a3). The percolation analy-
sis shows that liquid phases are always network fluids while
the vapor phase may or may not be percolated. Closed loops
of immiscibility, when present, are entirely percolated.

The origin of the LL demixing at low temperatures is the
same as that observed in the mixtures with ε∗

B B = 1.1 and
ε∗

AB = ε∗
AA = 1. As the temperature is reduced the fractions

of unbonded sites, X A and X B , decrease and there is demixing
between a phase where the AA bonds are predominant (small
values of composition) and another where the B B bonds pre-
dominate (large values of composition). AB bonds are penal-
ized as they reduce the probability of AA bonding, which is
energetically favorable.

This mixture is topologically classified as a limiting case
of type III phase equilibria [(see the pT projection in Fig.
7(a)] where only one fluid undergoes LV condensation. The
critical line starts at the critical point of the pure 3A fluid, ex-
hibits a pressure maximum followed by a pressure minimum
at lower temperatures, and it continues with a negative slope
to high pressures, where it is expected to intersect the solid
phase lines. The critical density increases monotonically as
the pressure is reduced [a representation of Tc versus ηc is
shown in Fig. 8(a)]). Topological changes are not expected for
other values of ε∗

AA > 1, although minor modifications of the
critical line may occur. Thus, there is no empty fluid regime
in this class of mixtures, as it is pre-empted by LL demixing
at low pressures.

2. 0 < ε∗
AA < 1, ε∗

AB = ε∗
BB = 1

In this class of mixtures it is entropically and energeti-
cally favorable to form AB bonds, and therefore these mix-
tures are expected to exhibit empty fluid behavior. Let us start
by reducing the interaction between A patches to ε∗

AA = 0.85.
Temperature-composition phase diagrams at constant pres-
sure are depicted in the second row of Fig. 6. The mixture
is completely miscible at pressures above p(3)

c . By reducing
the pressure below p(3)

c , we find that the LV condensation of
the pure 3A fluid at the x = 0 axis is shifted to finite values
of the composition and ends in an upper critical point. Panel
(b1) of Fig. 6 is an example. By contrast to the mixtures in-
vestigated previously, the slope of the binodal in the T x plane
is positive, indicating an increase in the stability of the liq-
uid phase when 2B particles are added to the mixture. The
addition of 2B particles reduces the probability of branching
(or equivalently the entropy of bonding) and a negative slope
of the binodal signals a decrease in the stability of the liq-
uid phase. Here, however, the loss in the entropy of bond-
ing is overcome by the gain in the bonding energy as the AB
bonds are energetically favorable. Note that mixtures where
0 < ε∗

B B < 1, ε∗
AA = ε∗

AB = 1 (analyzed in Sec. III B 3) are
similar but not exactly the same. In that case the bonding en-
ergy of the mixture is also minimized by the formation of AB
bonds, with respect to B B bonds, but it is higher than the
bonding energy of a pure 3A fluid, whereas in the mixture an-
alyzed in this section (ε∗

AA < 1, ε∗
AB = ε∗

B B = 1) it is pos-

sible to achieve mixed states with bonding energy lower than
that of the pure 3A fluid.

As pressure is further reduced, a negative azeotrope ap-
pears [see panel (b2) of Fig. 6]. The second LV branch leav-
ing the azeotrope at high composition grows rapidly as the
pressure is reduced [panel (b3) in Fig. 6]. This LV branch
is bounded by a critical point with critical density and criti-
cal temperature that decrease continuously toward zero as the
pressure vanishes [see Fig. 8(b)]. Therefore, as expected, the
mixture exhibits empty fluid behavior.

Topologically this is again a limiting case of type I mix-
tures with the addition of a negative azeotrope, usually re-
ferred to as type I-A phase equilibria28 [see the pT projection
in panel (b) of Fig. 7].

We proceed by reducing the AA bonding energy to ε∗
AA

= 0.5. Three T x phase diagrams at representative pressures
are depicted in the third row of Fig. 6. The mixture is com-
pletely miscible at p > p(3)

c . Below p(3)
c there is a range of

pressures in which the phase diagram consists only of the LV
phase transition, shifted from the x = 0 axis [panel (c1) in
Fig. 6]. As before, the slope of the binodal is positive. There
is a remarkable maximum in the percolation line at tempera-
tures higher than the LV condensation of the pure component.
Thus, by increasing the number of particles with two patches
it is possible to find re-entrant percolation behavior from a
nonpercolated to a percolated fluid and back to to a nonperco-
lated fluid. The addition of 2B particles to the mixture reduces
branching, but as the AB bonds are energetically favorable,
with respect to AA bonds, the probability of branching can,
under some circumstances, increase rather than decrease as
the composition of 2B particles increases and re-entrant per-
colation behavior obtains.

As the pressure is reduced [panel (c2) of Fig. 6] a
new two-phase region emerges in the form of a closed loop
bounded above (below) by an upper (lower) critical point. It
is well inside the percolated region and therefore it is a phase
transition between two network fluids or percolated states.
The new two-phase region is not connected to the x = 0 axis,
clearly showing that the condensation is unrelated to the LV
condensation of the pure 3A fluid. As the pressure is further
reduced, the distinct two-phase regions merge and, as previ-
ously, there is a negative azeotrope [panel (c3) in Fig. 6]. Once
the azeotrope appears, a new LV branch grows bounded by
a critical point, which moves toward lower temperature and
density as the pressure vanishes [see Fig. 8(c)]. The mixture
exhibits empty fluid behavior.

Let us focus now on the pT projection of this mixture,
represented in Fig. 7(c). It is still a limiting case of type I-A
mixtures (type I with an azeotrope). Interestingly, the criti-
cal line leaves the critical point of the pure 3A fluid and goes
initially to higher temperatures, a very unusual situation.

3. ε∗
AA = 0, ε∗

AB = ε∗
BB = 1

The last set of T x phase diagrams in Fig. 6 (fourth row)
illustrates the extreme case in which A patches do not interact
(ε∗

AA = 0). As a result, none of the two pure fluids undergoes
LV condensation. However, the bonding interaction between
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dissimilar patches (AB) is present and drives condensation at
pressures below p(+) ≈ 2.92 × 10−5ε/vs . Slightly below p(+)

[panel (d1) of Fig. 6] a closed miscibility gap grows inside the
percolated region. Well below p(+) [panels (d2) and (d3) of
Fig. 6] there is a negative azeotrope with two LV branches
bounded by critical points. As the pressure vanishes, both
critical temperatures tend to zero, but the critical density be-
haves differently in each branch [see Fig. 8(d)]. The critical
point rich in 2B particles exhibits empty fluid behavior, while
the critical point rich in 3A particles tends asymptotically to
ηc → 0.007.

The behavior is analogous to the mixture with ε∗
AA = 0.5

with the absence of the LV branch connected to the pure 3A

fluid condensation. It is not possible to classify this mixture
following van Konynenburg and Scott28 as neither of the pure
fluids has LV condensation. The critical line in the pT pro-
jection [see Fig. 7(d)] forms a closed loop starting and end-
ing at p → 0 and T → 0 where we have found two different
solutions.

D. 2B − 3A mixtures: εAA = εBB

Finally, we analyze mixtures with ε∗
AA = ε∗

B B . Repre-
sentative examples of T x phase diagrams at p∗

1 = pvs/ε

= 1.05 × 10−4 are plotted in Fig. 9, the pressure–temperature
projections are depicted in Fig. 10, and the properties of the
critical points are shown in Fig. 11.

1. ε∗
AB > 1, ε∗

AA = ε∗
BB

In this case AB bonds are energetically favorable with
respect to both AA or B B bonds, and therefore there is no LL
demixing at low temperatures.

The T x phase diagrams are qualitatively the same as
those of the reference 2A − 3A mixture. An example is plot-
ted in panel (a) of Fig. 9 for ε∗

AB = 1.1 at p∗
1 . It should be

compared to the phase diagram of the 2A − 3A reference mix-
ture depicted in panel (b1) of Fig. 3. At constant pressure,
the LV two-phase region shrinks as the strength of the inter-
action between dissimilar patches increases, and the critical
point moves toward higher temperature and lower composi-
tion. These mixtures are limiting cases of type I (Fig. 10),
and, as expected, the critical packing fraction and the critical
temperature tend to zero as the pressure vanishes (Fig. 11). In
other words, the mixture exhibits empty fluid behavior.

Changes in the topology of the phase diagram (as the ap-
pearance of negative azeotropes) may arise if the bonding in-
teraction between dissimilar patches is much stronger than
the interaction between identical patches: ε∗

AB/ε∗
αα ' 1, α

= A, B. Nevertheless, as far as the critical properties at low
pressure are concerned, no changes are expected to occur.

2. 0 ≤ ε∗
AB < 1, ε∗

AA = ε∗
BB

A small decrease in the AB bonding interaction drives
phase separation at low temperature, pre-empting the empty
fluid regime. We have plotted two phase diagrams at the same
pressure (p∗

1) in Fig. 9 for: ε∗
AB = 0.955 in panel (b) and

TABLE I. Summary of the phase behavior of 2B − 3A mixtures: The
bonding energy that characterizes the mixture (the other two are set to one),
the stability of empty fluids and the topological classification of the mixture
phase diagram.

Mixture Empty fluids Type Section

ε∗
B B > 1 no III III B 1

0 < ε∗
B B < 1 yes I III B 3

ε∗
B B = 0 no I III B 2

ε∗
AA > 1 no III III C 1

0 < ε∗
AA < 1 yes I-A III C 2

ε∗
AA = 0 yes – III C 3

ε∗
AB > 1 yes I III D 1

0 < ε∗
AB < 1 no III III D 2

ε∗
AB = 0 no III III D 2

ε∗
AB = 0 in panel (c). For bonding strengths ε∗

AB ! 1 there are
two regions of phase separation (LL demixing bounded by an
upper critical point at low temperatures, and LV condensa-
tion bounded by a lower critical point at high temperatures) at
pressures below the critical pressure of the pure 3A fluid (b).
When ε∗

AB ( 1, both regions merge into a single two-phase
region without critical points below p(3)

c , see, for example,
panel (c). In both cases, at pressures above p(3)

c , LL demixing
is always present bounded by an upper critical point. These
mixtures are limiting cases of type III mixtures (see Fig. 10).
The strength of the AB interaction leads to slight changes of
the critical line. Note, for example, the slope of the critical
line at high pressures: positive when ε∗

AB ( 1 and negative
when ε∗

AB ! 1.

IV. CONCLUSIONS

We have carried out a systematic analysis of binary mix-
tures of patchy particles with two patches of type B and
three patches of type A, focusing on the empty fluid behav-
ior discovered in one of these mixtures.11, 12 We have found a
rich phase behavior with closed miscibility gaps, liquid–liquid
demixing, negative azeotropes, and, from a topological point
of view, three different types of mixtures: type I, I-A, and III.
The main results are summarized in Table I.

We have found that liquid–liquid demixing, at low tem-
peratures and pressures, is the primary mechanism that pre-
empts the empty fluid regime in some of these mixtures.
LL demixing is always present when unlike (AB) bonds are
weaker than at least one of the other two bonds between par-
ticles of the same species (AA or B B bonds). These mixtures
are limiting cases of type III. Within this class the detailed
phase behavior depends on the values of the bonding energies.
For example, the slope of the critical line in the pT projection,
the appearance of closed miscibility gaps, or the asymptotic
values of the critical temperature and critical concentration as
the pressure increases, are controlled by the specific values of
the bonding energies.

The mixtures exhibit empty fluid behavior if the AB
bonds are stronger than at least one of the other two. These
mixtures are limiting cases of type I or type I-A (type I with
the addition of a negative azeotrope).The most interesting
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case occurs in mixtures with bonding strengths ε∗
B B = ε∗

AB
and ε∗

AA ( 1. In these mixtures there is a negative azeotrope
and the critical line goes initially to the temperatures above
that of the pure 3A fluid.

There is only one case where AB bonds are energetically
favorable and the mixture does not exhibit empty fluid behav-
ior: the mixture with εAB = εAA and εB B = 0. In this case the
absence of bonding between particles with two patches pre-
cludes the empty liquid regime. In fact, near the critical point
of the mixture there is coexistence between two network flu-
ids with finite packing fractions as the pressure vanishes. This
behavior is similar to that found previously21 for 2A − 5A bi-
nary mixtures (i.e., mixtures of particles with two and five
identical patches) where the entropy of bonding drives the
liquid–liquid demixing pre-empting the liquid–vapor phase
transition.

In a previous study21 we found that the driving force for
the topological change in the phase diagram of mixtures with
a single bonding energy is the difference in the bonding en-
tropy associated with bonds between like and unlike particles.
It is desirable to address this question in more detail by inves-
tigating mixtures of particles with different diameters, and/or,
different types of bonding sites in such a manner that both flu-
ids are constrained to have similar values of the critical pres-
sure and temperature. In that context, the present study is a
step toward elucidating the competition between the bonding
entropy and the bonding energy in the determination of the
topology of the phase diagrams of binary mixtures.

Binary mixtures of particles with different types of bond-
ing sites are also crucial to the investigation of a wide range
of structured fluids, with different macroscopic properties, in-
cluding stable bicontinuous gels.32, 33 This is an immediate
goal that will be addressed in future work.

Finally, a word about the absolute stability of the fluid
phases reported in this paper. Although at low pressures and
low (but finite) temperatures we expect the fluid to be ab-
solutely stable, it is clear that solid phases will intervene
and pre-empt some of the high pressure and/or low temper-
ature features of the phase diagrams reported here. The cal-
culation of solid phase diagrams is much more complicated
but progress has been reported recently, including the ground
state analysis of binary mixtures of low-functionality patchy
particles in two dimensions.34, 35
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